Assessing feasibility and risk to translate, de-identify and summarize medical letters using deep learning
Lucas W. Gauthier, Marjolaine Willems, Nicolas Chatron, Camille Cenni, Pierre Meyer, Valentin Ruault, Constance Wells, Quentin Sabbagh, David Genevieve, Kevin Yauy
doi: https://doi.org/10.1101/2023.07.27.23293234
Lucas W. Gauthier
1Genetics Department, Lyon University Hospital, Lyon, France
2Montpellier University, Inserm U1183, IRMB, Reference center for congenital anomalies, Clinical Genetic Unit, Montpellier University Hospital Center, Montpellier, France
Marjolaine Willems
2Montpellier University, Inserm U1183, IRMB, Reference center for congenital anomalies, Clinical Genetic Unit, Montpellier University Hospital Center, Montpellier, France
Nicolas Chatron
1Genetics Department, Lyon University Hospital, Lyon, France
3Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261 -INSERM U1315, Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
Camille Cenni
4Clinical Cytology and Genetics Department, Carémeau Hospital, Nîmes, France
Pierre Meyer
5Department of Pediatric Neurology, Montpellier University Hospital Center, PhyMedExp, CNRS, INSERM, Montpellier University, Montpellier, France
Valentin Ruault
2Montpellier University, Inserm U1183, IRMB, Reference center for congenital anomalies, Clinical Genetic Unit, Montpellier University Hospital Center, Montpellier, France
Constance Wells
2Montpellier University, Inserm U1183, IRMB, Reference center for congenital anomalies, Clinical Genetic Unit, Montpellier University Hospital Center, Montpellier, France
Quentin Sabbagh
2Montpellier University, Inserm U1183, IRMB, Reference center for congenital anomalies, Clinical Genetic Unit, Montpellier University Hospital Center, Montpellier, France
David Genevieve
2Montpellier University, Inserm U1183, IRMB, Reference center for congenital anomalies, Clinical Genetic Unit, Montpellier University Hospital Center, Montpellier, France
Kevin Yauy
6Univ Montpellier, LIRMM, CNRS, Reference center for congenital anomalies, Clinical Genetic Unit, Montpellier University Hospital Center, Montpellier, France
Article usage
Posted July 31, 2023.
Assessing feasibility and risk to translate, de-identify and summarize medical letters using deep learning
Lucas W. Gauthier, Marjolaine Willems, Nicolas Chatron, Camille Cenni, Pierre Meyer, Valentin Ruault, Constance Wells, Quentin Sabbagh, David Genevieve, Kevin Yauy
medRxiv 2023.07.27.23293234; doi: https://doi.org/10.1101/2023.07.27.23293234
Assessing feasibility and risk to translate, de-identify and summarize medical letters using deep learning
Lucas W. Gauthier, Marjolaine Willems, Nicolas Chatron, Camille Cenni, Pierre Meyer, Valentin Ruault, Constance Wells, Quentin Sabbagh, David Genevieve, Kevin Yauy
medRxiv 2023.07.27.23293234; doi: https://doi.org/10.1101/2023.07.27.23293234
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (710)
- Anesthesia (201)
- Cardiovascular Medicine (2948)
- Dermatology (249)
- Emergency Medicine (440)
- Epidemiology (12754)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4588)
- Geriatric Medicine (419)
- Health Economics (729)
- Health Informatics (2918)
- Health Policy (1069)
- Hematology (389)
- HIV/AIDS (924)
- Medical Education (426)
- Medical Ethics (115)
- Nephrology (469)
- Neurology (4364)
- Nursing (236)
- Nutrition (640)
- Oncology (2273)
- Ophthalmology (647)
- Orthopedics (258)
- Otolaryngology (325)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (501)
- Pediatrics (1197)
- Primary Care Research (496)
- Public and Global Health (6947)
- Radiology and Imaging (1529)
- Respiratory Medicine (915)
- Rheumatology (438)
- Sports Medicine (385)
- Surgery (489)
- Toxicology (60)
- Transplantation (212)
- Urology (181)