Abstract
Modeling is an important tool to utilize at the beginning of an infectious disease outbreak, as it allows estimation of parameters—such as the basic reproduction number, R0—that can be used to postulate how the outbreak may continue to spread. However, there exist many challenges that need to be accounted for, such as an unknown first case date, retrospective reporting of ‘probable’ cases, changing dynamics between case count and death count trends, and the implementation of multiple control efforts and their delayed or diminished effects. Using the near-daily data provided from the recent outbreak of Sudan ebolavirus in Uganda as a case study, we create a model and present a framework aimed at overcoming these aforementioned challenges. The impact of each challenge is examined by comparing model estimates and fits throughout our framework. Indeed, we found that allowing for multiple fatality rates over the course of an outbreak generally resulted in better fitting models. On the other hand, not knowing the start date of an outbreak appeared to have large and non-uniform effects on parameter estimates, particularly at the beginning stages of an outbreak. While models that did not account for the decaying effect of interventions on transmission underestimated R0, all decay models run on the full dataset yielded precise R0 estimates, demonstrating the robustness of R0 as a measure of disease spread when examining data from the entire outbreak.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
KS, SK, and AD were supported in part by grant SES2200228 from the National Science Foundation. MSM was supported in part by grant R35GM146974 from the National Institute of General Medical Sciences, National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The datasets analyzed during this study are all publicly available and references throughout the manuscript.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
The datasets analyzed during this study are all publicly available and references throughout the manuscript.