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Abstract 

Modeling is an important tool to utilize at the beginning of an infectious disease 

outbreak, as it allows estimation of parameters—such as the basic reproduction number, R0—that 

can be used to postulate how the outbreak may continue to spread. However, there exist many 

challenges that need to be accounted for, such as an unknown first case date, retrospective 

reporting of ‘probable’ cases, changing dynamics between case count and death count trends, 

and the implementation of multiple control efforts and their delayed or diminished effects. Using 

the near-daily data provided from the recent outbreak of Sudan ebolavirus in Uganda as a case 

study, we create a model and present a framework aimed at overcoming these aforementioned 

challenges. The impact of each challenge is examined by comparing model estimates and fits 

throughout our framework. Indeed, we found that allowing for multiple fatality rates over the 

course of an outbreak generally resulted in better fitting models. On the other hand, not knowing 

the start date of an outbreak appeared to have large and non-uniform effects on parameter 

estimates, particularly at the beginning stages of an outbreak. While models that did not account 

for the decaying effect of interventions on transmission underestimated R0, all decay models run 
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on the full dataset yielded precise R0 estimates, demonstrating the robustness of R0 as a measure 

of disease spread when examining data from the entire outbreak.  

 

Introduction 

Epidemiological modeling is an important tool at the beginning of an infectious disease 

outbreak, as it allows estimation of parameters that can be used to postulate how the outbreak 

may continue to spread. By estimating the transmission rate of an infectious agent at the 

beginning of an outbreak, the basic reproduction number (R0) can be calculated. Defined as the 

number of secondary infections generated by an infected index case in a completely susceptible 

population, R0 is used to determine the epidemic potential of an outbreak, where values above 

one indicate epidemic potential and values below one typically lead to the end of the outbreak (1-

4). This value is particularly important as it is often used to determine which control efforts 

should be put in place, as seen recently at the beginning of the COVID-19 pandemic (5-8).  

However, many challenges exist in estimating accurate reproduction numbers throughout 

the course of an outbreak, particularly in the case of emerging infectious diseases where little 

prior knowledge is available. In the early stage, information is rarely available regarding the 

primary case (i.e., the first case in a given population), thus often leaving the start date of the 

outbreak unknown (9, 10). Further, once an index case (i.e., the first infected individual reported 

to health authorities) has been identified, the first few days of data collection tend to yield large 

increases in case counts due to "probable" cases being identified retrospectively (11). This 

identification of probable cases can be particularly complex for diseases with high case fatality 

rates (CFRs), where post-mortem individuals are reported as a case and a death on the same date, 

closely tying the trends between these values and causing inflated CFR estimates that decrease 
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over the course of the outbreak (12, 13). As the outbreak progresses, improved surveillance, 

reporting efforts, and public awareness can decrease the time between symptom onset and case 

reporting ((14, 15). Accounting for these changing dynamics between case count and death count 

trends over the course of an outbreak is not something that can be easily accounted for when 

modeling disease spread (16, 17). 

 The implementation of control efforts during an outbreak, particularly in the early phase, 

can also add challenges to modeling efforts. While the presence of an intervention can reduce the 

initial transmission rate, there is no way to estimate the true epidemic potential of the pathogen 

using R0 when control efforts are implemented immediately after detection of the index case, as 

the intervention would have already changed the effective susceptibility of the population when 

data reporting started. In this situation, the effective reproduction number (Re) is typically used 

to predict the number of secondary infections generated by an infected index case — namely, in 

a population that is not completely susceptible (4, 18, 19). Re can be estimated throughout the 

course of an epidemic to assess changes in disease transmission due to infection-conferred 

immunity and control efforts, such as social distancing, lockdown, or vaccination (4, 19-21). 

There have been disease models created that account for decaying transmission due to control 

implementation (22-27). However, to our knowledge, these models do not allow for the 

implementation of multiple control efforts with differing effects on disease spread during the 

outbreak. Indeed, interventions can not only have differing effects on transmission, but also have 

varying time delays between implementation and impact, as seen with the COVID-19 pandemic 

(28-30). Further, not all interventions are sustainable and some may have diminished effects on 

pathogen transmission (31). For example, contact tracing with a limited number of resources 

becomes inefficient when case counts increase; similarly, social distancing adherence can 
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decrease over time due to "pandemic fatigue", as seen with COVID-19 (32-34). There is a need 

to account for the presence of multiple control efforts, their delayed effects, and the possible 

diminishing of those effects at the beginning of an outbreak to determine intervention efficacy. 

Recently, this need was underscored when an outbreak of Ebola disease caused by Sudan 

virus (SUDV), recently reclassified as Sudan Virus Disease (SVD) (35, 36), occurred in Uganda 

for the first time in over a decade. As SVD outbreaks have historically been smaller and more 

sporadic than their Ebola Virus Disease counterparts, there has been considerably less research 

done on SVD transmission patterns, treatment methods, and vaccine candidates (37). During the 

recent SVD outbreak in Uganda, near-daily data were reported from detection of the first case to 

the last case, providing an invaluable case study in overcoming the challenges of modeling an 

emerging infectious disease outbreak, particularly at the beginning stages. 

Here, using the 2022 outbreak of SVD in Uganda as a case study, we create a model and 

present a workflow which accounts for probable case counts, changing dynamics between case 

and death count trends, and the presence of multiple control efforts and their delayed or 

diminished effects. By examining how including, or not including, each of these factors can 

change estimates of disease spread and epidemic potential, we determine which are the most 

important to account for in models of future outbreaks. 

 

Methods 

Model 

 To examine the trajectory of the outbreak and the effect of two separate control measures, 

a susceptible-exposed-infectious-deceased-recovered (SEIDR) model was utilized. This is a 

modified version of the classic SEIR model, previously used to model Ebola disease spread (38), 
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which accounts for disease-related mortality. We chose to include the deceased class (D) in the 

model due to the high case fatality rates associated with SVD (39). Further, this allows our 

model to have a closed system, defined by the following differential equations: 

𝑑𝑆

𝑑𝑡
= −

𝛽(𝑡)𝑆𝐼

𝑁
 

𝑑𝐸

𝑑𝑡
=
𝛽(𝑡)𝑆𝐼

𝑁
−  𝜎𝐸 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 −  𝛾𝐼 

𝑑𝐷

𝑑𝑡
= 𝑓(𝑡)𝛾𝐼 

𝑑𝑅

𝑑𝑡
= (1 − 𝑓(𝑡))𝛾𝐼 

𝑑𝐶

𝑑𝑡
= 𝜎𝐸, 

where classes S, E, I, D, and R denote the number of susceptible, exposed, infectious, deceased, 

and recovered individuals and the total population, N = S + E +I + D + R.  C is not an 

epidemiological state; rather it is used to keep track of the cumulative number of cases over time. 

The average duration of incubation, which is the time it takes a disease to develop after exposure 

to a pathogen, is 1/𝜎; 1/𝛾 is the average duration of infectiousness; f(t) is the case fatality rate 

(CFR) at time t; and 𝛽(t) is the time-dependent transmission rate. To account for the presence of 

n different intervention efforts at separate time points, 𝜏1,𝜏2, …, 𝜏𝑛, 𝛽(t) is set as a constant up 

until the introduction of the first intervention at time 𝜏1 , at which point it begins to decay 

exponentially at rate k1.  The diminished efficacy of interventions is accounted for by allowing 

the decaying effects of intervention x to end at some time point, 𝜏𝑥_𝑒𝑛𝑑, after which the 

transmission rate is set at a new constant value, 𝛽𝑥+1, and the next intervention has its own 

independent effect on transmission rate decay, kx+1: 
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𝛽(𝑡) =

{
 
 
 

 
 
 

𝛽1, 𝑡 < 𝜏1
𝛽1𝑒

−𝑘1(𝑡−𝜏1), 𝜏1_𝑒𝑛𝑑 > 𝑡 ≥ 𝜏1
𝛽2, 𝜏2 > 𝑡 ≥ 𝜏1_𝑒𝑛𝑑

𝛽2𝑒
−𝑘2(𝑡−𝜏2), 𝑡 ≥ 𝜏2

…
𝛽𝑛, 𝜏𝑛 > 𝑡 ≥ 𝜏(𝑛−1)_𝑒𝑛𝑑

𝛽𝑛𝑒
−𝑘𝑛(𝑡−𝜏𝑛), 𝑡 ≥ 𝜏𝑛

. 

This builds upon previous models of SVD that account for exponentially decaying transmission 

after a single intervention (22, 23). Changes in CFR may also be seen throughout the course of 

an outbreak due to a decrease in the time between symptom onset, care seeking, and case 

detection, potentially allowing for earlier supportive care and improved survival. Further, for 

diseases with a high CFR, such as SVD, early estimates are likely to be inflated from 

retrospective case/death reporting. Thus, for each time point of intervention implementation in 

our model (𝜏1,𝜏2, …, 𝜏𝑛), we allow the option for the CFR, f(t), to change to a new constant 

value: 

𝑓(𝑡) =

{
 
 

 
 

𝑓0, 𝑡 < 𝜏1
𝑓1, 𝜏2 > 𝑡 ≥ 𝜏1

…
𝑓𝑛−1, 𝜏𝑛 > 𝑡 ≥ 𝜏𝑛−1
𝑓𝑛, 𝑡 ≥ 𝜏𝑛

. 

This model will be henceforth referred to as the “independent decay model”. 

 

SVD Outbreak and Datasets 

 On September 20th, 2022, for the first time in over a decade, Uganda declared an 

outbreak of Ebola disease caused by Sudan virus (SUDV) following confirmation of a case in 

Mubende district (40). Sudan Virus Disease (SVD) is a severe, often fatal, zoonotic illness that 

spreads through contact with the bodily fluids of a person who is sick with or has died from the 

disease (39, 41-43). Unlike with Ebola virus, there are currently no treatments or vaccines 
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targeting SUDV, although there were a few vaccine candidates that became prioritized and began 

clinical trials in Uganda during this outbreak (44-47). The last case of the SVD outbreak was 

reported on November 27th; however, the Ministry of Health of Uganda did not declare the end 

of the outbreak until January 11th, 2023, 42 days (twice the maximum incubation period of 

SUDV infections) after the last confirmed case was buried (48). 

During this SVD outbreak, 22 of the 164 cases and 77 deaths were reported as 

"probable", with the majority (N=19) occurring before the index case was detected (48, 49). Two 

interventions were enacted over the course of the outbreak. First, a rapid and extensive contact 

tracing effort was put in place after the outbreak was declared on September 20th, with 4793 

cumulative contacts listed and around 91% of contacts completing 21 days of follow-up 

(although there were some inconsistencies in reports of contacts completing the 21-day follow-

up, as cataloged in Text S1) (49, 50). Second, a 21-day lockdown was declared in the two most 

affected districts (Mubende and Kassanda) on October 15th, which included an overnight 

curfew, the closure of places of worship and entertainment, and restriction of movements in and 

out of the districts (50, 51). The lockdown was extended twice, with mobility restrictions finally 

being lifted 63 days later on December 17th (52). While the majority of cases occurred in 

Mubende, Kassanda, and Kampala districts, there were nine total districts with confirmed cases: 

Mubende, Kassanda, Kampala, Kyegegwa, Bunyangabu, Kadagi, Wakiso, Masaka, and Jinja 

(48). 

Our model used multiple sources to procure data on the number of cases and subsequent 

deaths reported during this SVD outbreak in Uganda. By September 29, 2022, the Ministry of 

Health (MoH) Uganda began publishing near-daily situation reports on the SVD outbreak, 

providing data on the number of confirmed and probable cases and deaths (49). For the nine days 
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following the report of the first Ebola case on September 20, 2022, these reports were not yet 

available. Thus, we instead sourced case and death counts from the MoH Uganda and World 

Health Organization (WHO) Regional Office for Africa Twitter pages and the WHO Uganda 

news updates (see Text S2 for date-specific sources) (40, 49, 53-56). Daily case and death counts 

were compiled in two ways: using only those reported as confirmed (the “confirmed reported 

only” dataset) and using both confirmed and probable values to obtain daily counts for total 

cases and deaths (the “as reported” dataset). Together, these datasets covered the period from 

September 20, 2022 – December 4, 2022. While the last case was reported on November 27th, 

the last change to case and death counts was made a week later due to data reconciliation efforts 

(Text S1) (49). 

 A third dataset (aside from the “confirmed reported only” and “as reported” datasets) was 

also compiled by extracting information from graphs in the MoH Uganda situation reports, 

where cases were indexed by the onset date of their symptoms. This dataset provided a timeline 

for those probable cases that occurred at the beginning of the outbreak that were not reported 

until days or weeks after death, thus allowing us to examine the time between symptom onset 

and case reporting throughout the outbreak. This will henceforth be referred to as the “MoH 

onset” dataset. 

 The difference between symptom onset and case reporting dates was examined by 

plotting the time series of cumulative case counts by symptom onset date (“MoH onset”) shifted 

zero, two, four, and six days forward alongside the cumulative case counts “as reported”. As the 

“MoH onset” dataset included both probable and confirmed cases, comparisons were made with 

the “as reported” dataset rather than the “confirmed cases only”. Mean square error estimates 

(MSE) were calculated to compare the datasets. The “MoH onset” and the “as reported” datasets 
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were also used to estimate the effective reproduction number (Re), with time-varying results 

compared over the course of the outbreak. Re was estimated using the EpiEstim package in R 

(57) with the default weekly sliding windows, where values were estimated on the last day of the 

weeklong window. The serial interval (i.e., the time between symptom onset for two consecutive 

cases in a chain of transmission) was set to be parametric following a Weibull distribution with 

mean of 12.0 days and standard deviation of 5.2 days. This was based on contact tracing data 

from the 2000 SVD outbreak in Uganda (38). Time-varying Re estimates from both datasets were 

graphed for comparison. To examine the changes in the case fatality rate (CFR) throughout the 

outbreak due to decreased case detection time, daily CFRs were calculated. Further, to determine 

the effect of retrospective "probable" death reporting early in the outbreak, daily CFRs were 

calculated for both the “as reported” dataset and the “confirmed reported only” dataset. A daily 

Chi-square Test of Homogeneity with Yates’ continuity correction was conducted to determine 

whether the proportion of deaths (CFR) was equivalent when considering only confirmed cases 

(“confirmed reported only”) as when considering confirmed and probable cases (“as reported”). 

These values were also graphed for visual comparison.  

 

Parameter Estimation Workflow 

For all models, duration of incubation (1/𝜎) and infectiousness (1/𝛾) were set at 3.35 and 

3.5 days, respectively, based on previous estimates from the 2000 SVD outbreak in Uganda (38, 

58). For all model parameterizations, maximum likelihood estimates (MLE) of the free 

parameters were obtained by fitting models to case and death count data using the bbmle 

package in R and the Nelder & Mead optimization algorithm (59, 60). Cumulative case and 

death counts were assumed to be Poisson distributed. All models were fit to the “as reported” 
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case and death count dataset, because reported data are generally what is available when 

conducting early outbreak modeling. Using the MLE values for initial transmission rate (𝛽1) and 

the fixed value for duration of infectiousness (1/𝛾), the basic reproduction number (R0) was 

calculated as R0 = 𝛽1/𝛾. To determine how accurately each model parameterization fit to the 

reported data, MLE values were plugged back into the SEIDR model and simulations provided 

the predicted daily incidence counts and cumulative case and death counts over time. These 

predicted values were then compared to the observed “as reported” dataset using MSE. The 

predicted cumulative case counts were also used for Pearson goodness-of-fit tests, examining 

how well the observed case counts corresponded to those predicted from each model. 

 Model parameterization followed a branching process, as depicted in Figure S1. This 

workflow was utilized in order to examine the individual and combined effects of accounting for 

probable case counts, changing dynamics between case and death count trends, and the presence 

of multiple control efforts and their delayed or diminished effects. 

1. First intervention 

a. Decaying transmission 

To examine the effect of the first intervention — the extensive contact tracing effort — on 

transmission (n=1), the model was parameterized using only data from September 20th – October 

14th, before the second intervention — the 21-day lockdown — was enacted. The model was 

parameterized in two ways — as a base SEIDR model where the intervention had no effect 

(k1=0): 

𝛽(𝑡) =  𝛽1 𝑎𝑛𝑑 𝑓(𝑡) =  𝑓0, (𝐵𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙)   
and as a model like Althaus et al. (23), where transmission decayed after the intervention was 

implemented: 
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𝛽(𝑡) = {
𝛽1, 𝑡 < 𝜏1

𝛽1𝑒
−𝑘1(𝑡−𝜏1), 𝑡 ≥ 𝜏1

 𝑎𝑛𝑑 𝑓(𝑡) =  𝑓0. (𝐷𝑒𝑐𝑎𝑦 𝑚𝑜𝑑𝑒𝑙) 

For both scenarios, as in Althaus et. al. (23), we also accounted for the outbreak start date (i.e.,  

the date of the primary case’s symptom onset, 𝜏0) in two ways: (1) it was fixed as August 7th, 

2022, based on data from MoH Uganda and the Centers for Disease Control and Prevention 

(CDC) and (2) it was allowed to be a free parameter estimated by maximum likelihood 

estimation (MLE) (Table 1) (61). The latter option was included to reflect the state of knowledge 

early on in an outbreak when the date of symptom onset for the primary case is typically not yet 

known (10). 

b. Onboarding of data collection 

The "onboarding" period of data collection refers to the first few days after the identification 

of an outbreak, when there are large increases in case and death counts due to "probable" cases 

being identified retrospectively and/or post-mortem. To examine the effect of excluding these 

first few days of data collection (September 20th – 23rd) when estimating disease spread 

parameters, the four parameterizations from above (i.e., base and decay models with the outbreak 

start date fixed and free) were also run for data from September 24th – October 14th. MSE values 

for September 24th – October 14th were compared for the resulting eight parameterizations to 

determine if inclusion or exclusion of the data onboarding period yielded daily incidence counts 

and cumulative case and death counts more similar to those from the reported dataset.  

c. Delayed decay 

For the better fitting timeframe (September 20th – October 14th vs. September 24th – 

October 14th), we also parameterized the model to delay the effect of intervention by 4, 7, and 

10 days by setting 𝜏1to be September 24th,27th, and 30th, respectively. This was done to account 

for the fact that the effects of control measures cannot typically be observed immediately after 
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implementation. Further, in the case of contact tracing, it may take a few days to acquire the 

available resources/personnel required and to detect all the infected cases for tracing. These 4-, 

7-, and 10-day delay scenarios were run with both free and fixed 𝜏0 values (Table 1).  

d. Changing case fatality rates 

Due to possible changes in CFR over the course of the outbreak and the possibility of an 

intervention affecting the CFR, we also considered a decay model where the CFR changed at the 

time of intervention implementation, 𝜏1, with the effect of the intervention delayed by 0, 4, 7, or 

10 days: 

𝛽(𝑡) = {
𝛽1, 𝑡 < 𝜏1

𝛽1𝑒
−𝑘1(𝑡−𝜏1), 𝑡 ≥ 𝜏1

 𝑎𝑛𝑑 𝑓(𝑡) = {
𝑓0, 𝑡 < 𝜏1
𝑓1, 𝑡 ≥ 𝜏1

. (
𝐷𝑒𝑐𝑎𝑦,

𝐶𝐹𝑅 𝑐ℎ𝑎𝑛𝑔𝑒 𝑚𝑜𝑑𝑒𝑙 
) 

Again, MSE values were calculated for daily incidence counts and cumulative case and death 

counts over time to determine whether including the changing CFRs provided estimates more 

similar to the reported data. 

2. Second intervention  

a. Decaying transmission 

To examine the effect of multiple interventions, the model was parameterized with data 

through December 4th, starting with either September 20th or September 24th, depending on 

which had a better fit above (September 20th – October 14th vs. September 24th – October 

14th). For all scenarios in this time frame, the outbreak start date (𝜏0), the delayed effect of the 

first intervention (if any), and the change in CFR at first intervention (if any) were set based on 

the best fit model from above. The first scenario examined was the “decay model” from above, 

which accounted for only the first intervention, thereby acting as a baseline where the second 

intervention had no effect. This was parameterized with 𝛽1, k1, f0, and (if applicable) f1 estimated 

using MLE (Table 1). We then compared this baseline to an n = 2 version of the "independent 
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decay model" from above, parameterizing it to include the decaying effects of both interventions 

on transmission rate, but not the diminished effects for the first intervention or the changing of 

case fatality rate (CFR) due to the second intervention (𝜏1𝑒𝑛𝑑 = 𝜏2, 𝛽2 = 𝛽1, 𝑎𝑛𝑑 𝑓2 = 𝑓1). 

𝛽(𝑡) = {

𝛽1, 𝑡 < 𝜏1
𝛽1𝑒

−𝑘1(𝑡−𝜏1), 𝜏2 > 𝑡 ≥ 𝜏1
𝛽2𝑒

−𝑘2(𝑡−𝜏2), 𝑡 ≥ 𝜏2

𝑎𝑛𝑑 𝑓(𝑡) = {
𝑓0, 𝑡 < 𝜏1
𝑓1, 𝑡 ≥ 𝜏1

 . (𝑇𝑤𝑜 𝑑𝑒𝑐𝑎𝑦 𝑚𝑜𝑑𝑒𝑙) 

This will be referred to as the "two decay model". MSE comparisons were made overall, as well 

as for the dataset up until October 15th (the dates used to examine the first intervention) and 

from October 15th onward (the dates used to examine the second intervention).  

b. Delayed decay 

If the "two decay model" had the better fit compared to the "decay model", we considered 

parameterizations where the second intervention had its effect delayed by 4, 7, or 10 days, setting 

𝜏2to be October 19th, 22nd, and 25th, respectively (Table 1). Particularly for the implementation of 

a lockdown, there was the possibility of a delayed effect based on stringency, compliance rate, 

and enforcement.  

c. Changing case fatality rates 

We also considered a version of the "two decay model" where the CFR changed at the time 

the second intervention went into effect, 𝜏2, with 0, 4, 7, and 10-day delayed effects: 

𝛽(𝑡) = {

𝛽1, 𝑡 < 𝜏1
𝛽1𝑒

−𝑘1(𝑡−𝜏1), 𝜏2 > 𝑡 ≥ 𝜏1
𝛽2𝑒

−𝑘2(𝑡−𝜏2), 𝑡 ≥ 𝜏2

 𝑎𝑛𝑑 𝑓(𝑡) = {

𝑓0, 𝑡 < 𝜏1
𝑓1, 𝜏2 > 𝑡 ≥ 𝜏1
𝑓2, 𝑡 ≥ 𝜏2

. (
𝑇𝑤𝑜 𝑑𝑒𝑐𝑎𝑦 ,

 𝐶𝐹𝑅 𝑐ℎ𝑎𝑛𝑔𝑒 𝑚𝑜𝑑𝑒𝑙
) 

3. Diminished effects 

a. Diminished effects of the first intervention 

To determine whether the effects of the first intervention diminished before the second 

intervention was put in place, the "independent decay model" was parameterized where the first 

intervention had decaying effects from time of implementation (𝜏1) up until October 15th 
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(𝜏1𝑒𝑛𝑑). These decaying effects ceased and a new constant transmission rate was set from 𝜏1𝑒𝑛𝑑 

until the date of the second intervention taking its delayed effect (𝜏2), either 4, 7, or 10 days after 

October 15th: 

𝛽(𝑡) =

{
 
 

 
 

𝛽1, 𝑡 < 𝜏1
𝛽1𝑒

−𝑘1(𝑡−𝜏1), 𝜏1𝑒𝑛𝑑 > 𝑡 ≥ 𝜏1
𝛽2, 𝜏2 > 𝑡 ≥ 𝜏1𝑒𝑛𝑑

𝛽2𝑒
−𝑘2(𝑡−𝜏2), 𝑡 ≥ 𝜏2

 𝑎𝑛𝑑 𝑓(𝑡) = {
𝑓0, 𝑡 < 𝜏1
𝑓1, 𝑡 ≥ 𝜏1

 . (
𝑇𝑤𝑜 𝑑𝑒𝑐𝑎𝑦,

𝑑𝑖𝑚𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑓𝑥 𝑚𝑜𝑑𝑒𝑙
) 

b. Changing case fatality rates 

Finally, we ran a version of the n = 2 "independent decay model" that allowed for diminished 

effects of the first intervention, delayed effects of the second intervention, and the CFR changing 

at time 𝜏2, when the second intervention took effect: 

𝛽(𝑡) =

{
 
 

 
 

𝛽1, 𝑡 < 𝜏1
𝛽1𝑒

−𝑘1(𝑡−𝜏1), 𝜏1𝑒𝑛𝑑 > 𝑡 ≥ 𝜏1
𝛽2, 𝜏2 > 𝑡 ≥ 𝜏1𝑒𝑛𝑑

𝛽2𝑒
−𝑘2(𝑡−𝜏2), 𝑡 ≥ 𝜏2

 𝑎𝑛𝑑 𝑓(𝑡) = {

𝑓0, 𝑡 < 𝜏1
𝑓1, 𝜏2 > 𝑡 ≥ 𝜏1
𝑓2, 𝑡 ≥ 𝜏2

. (

𝑇𝑤𝑜 𝑑𝑒𝑐𝑎𝑦,
𝑑𝑖𝑚𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑓𝑥,

𝐶𝐹𝑅 𝑐ℎ𝑎𝑛𝑔𝑒 𝑚𝑜𝑑𝑒𝑙 
) 

 

Results 

 After the first case of SVD was detected on September 20, 2022, reported case counts 

were most similar to the MoH onset data transposed 6 days ahead (Figure 1a) (Table S1-2). 

However, the time between case onset and reporting started to decrease during the middle of the 

outbreak, with reported counts best matching onset counts transposed 4 days ahead (Table S1). 

By the end of the outbreak, cases were being reported within zero to two days of symptom onset 

(Figure 1a) (Table S2). When examining Re estimates over time, the trend of the estimates from 

reported case data matched those estimated from the MoH onset dataset with a time lag (Figure 

1b). However, the reported case count dataset produced slightly higher Re estimates at the peaks 

and slightly lower estimates at the valleys. 
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When examining CFR values, those calculated from the “confirmed reported only” 

dataset were lower than those calculated from the “as reported” dataset between September 22nd 

and October 8th (Table S3). This is likely due to a denominator inflation issue when including 

the probable cases from the data onboarding period (September 24th – October 14th). Indeed, by 

October 1st, the two sets of CFR values had similar trends, with the ratios slowly growing closer 

to each other as the number of cases increased and the impact of adding twenty probable cases 

and twenty probable deaths lessened. By the end of the outbreak, CFR was estimated at 39.43% 

when including only confirmed cases and 47.24% when including confirmed and probable cases 

— estimates that were not found to be significantly different from each other (Chi-square Test of 

Homogeneity: p = 0.21) (Table S3). For both sets of CFR values, estimates decreased during the 

periods when case counts were increasing and vice versa.  

 When examining the effect of the first intervention on transmission during September 

20th – October 14th, the predicted values from the "decay" models (1.a.iii-iv) better fit the “as 

reported” dataset, as compared to the "base" models (1.a.i-ii) (Table 3). This was also the case 

when comparing "base" (1.b.i-ii) and "decay" (1.b.iii-iv) model fits to the dataset excluding the 

data onboarding period. Further, whether including or excluding the data onboarding period, the 

"decay" models estimated a higher transmission rate (𝛽1), and therefore a higher R0, than the 

base models. While models that treated the outbreak start date (𝜏0) as a free parameter generally 

fit better than their fixed 𝜏0 counterparts (1.a.i vs. 1.a.ii, 1.a.iii vs. 1.a.iv, 1.b.i vs. 1.b.ii, 1.b.iii vs. 

1.b.iv), they produced estimated start dates that were quite different from the "correct" date of 

August 7th, as reported by MoH Uganda and the CDC. The "base" models with a free 𝜏0 

parameter estimated earlier start dates (1.a.i: July 31st; 1.b.i: July 13th), leading to a longer 

underlying spread with a lower transmission rate (𝛽1) and lower R0 estimates (Table 2). For the 
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"decay" model starting on September 20th (1.a.iii), 𝜏0 was estimated to be more recent (August 

28th) and both the transmission (𝛽1=0.543) and decay rate (k1=0.116) were estimated to be higher 

than in the fixed 𝜏0 model (1.a.iv: 𝛽1=0.396, k1=0.026), likely because the model was fit to the 

first few data points when data onboarding was occurring (Table 2) (Figure 2). Indeed, when 

comparing  model fits with (1.a.i-iv) and without (1.b.i-iv) the data onboarding period, 

transmission rate (𝛽1) and decay rate (k1) estimates were similar when the start date of the 

outbreak (𝜏0) was fixed at August 7th (1.a.iv: 𝛽1=0.396, k1=0.026; 1.b.iv: 𝛽1=0.402, k1=0.040) 

(Table 2). When the start date (𝜏0) was treated as a free parameter, however, there were large 

differences in parameter estimates between the two models (1.a.iii: 𝛽1=0.543, k1=0.116; 1.b.iii: 

𝛽1=0.403, k1=0.040) (Table 2). Overall, the model fits with the onboarding period data (1.a.i-iv) 

produced predicted values more similar to the observed (“as reported”) dataset than the model 

fits without the onboarding period data (1.b.i-iv), both in terms of MSE and Pearson goodness-

of-fit statistic values (Table 3-4). However, when examining graphs of these predicted and 

observed values, it seems that models 1.a.i-iv were only better at fitting the data points on 

September 24th and 25th, the days immediately following the chosen data onboarding period 

(Figure 2). Further, the “decay” model starting on September 24th with 𝜏0 as a free parameter 

(1.b.iii) estimated the "correct" outbreak start date (August 7th) and had very similar estimates for 

𝛽1 and k1 compared to the “decay” model with fixed 𝜏0 (1.b.iv) (Table 2); therefore, we used the 

dataset starting from September 24th for all subsequent models. 

 When delaying the effect of the first intervention by 4, 7, or 10 days with the outbreak 

start date (𝜏0) set at August 7th (1.c.ii, 1.c.iv, 1.c.vi), transmission rate (𝛽1) estimates were very 

similar (1.c.ii: 0.400; 1.c.iv: 0.399; 1.c.vi:0.398). However, the longer the delay of effect, the 

higher the decay rate (k1) estimates were, with the 4-day delay model (1.c.ii) yielding a decay 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.27.23291973doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.27.23291973
http://creativecommons.org/licenses/by-nd/4.0/


rate estimate of 0.070 and the 10-day decay model (1.c.vi) yielding a decay rate estimate of 

0.332 (Figure 3) (Table 2). When the outbreak start date (𝜏0) was treated as a free parameter, the 

4- (1.c.i), 7- (1.c.iii), and 10-day (1.c.v) “delay” models estimated the date to be 3, 7, and 11 days 

earlier than August 7th, respectively (Table 2).  As these earlier first case dates provided an 

increased time for the disease to spread before intervention, transmission (𝛽1) estimates were 

lowered (1.c.i: 0.389; 1.c.iii: 0.380; 1.c.v:0.370), resulting in lower R0 estimates (1.c.i: 1.36; 

1.c.iii: 1.33; 1.c.v:1.29) (Figure 2) (Table 2).  

Allowing for the CFR (f) to change when the first intervention took effect (1.d.i-vi) had 

little impact on the fit of the models (Table 3-4). Interestingly, when the outbreak start date was 

treated as a free parameter for the "decay, CFR change" models (1.d.i, 1.d.iii, 1.d.v, 1.d.vii), the 

estimated start date of the outbreak was later than August 7th, the opposite effect than seen with 

“decay” models with delay and a constant CFR (1.d.ii, 1.d.iv, 1.d.vi, 1.d.viii) (Table 2).  

However, similarly to the models with one CFR, increased delay of intervention effects moved 

the estimated start date earlier for the “CFR change” models. That is, the 0-day “delay” model 

(1.d.i) estimated the start date as August 22nd, with increased delay moving the start date earlier 

(1.d.iii: August 18th; 1.d.v: August 10th; 1.d.vii: August 1st). Increased delay of intervention 

effects and earlier estimated outbreak start dates had corresponding increases in decay rate (k1) 

estimates (1.d.i: 0.071; 1.d.iii: 0.108; 1.d.v: 0.126; 1.d.vii: 0.154) and decreases in transmission 

rate (𝛽1) estimates (1.d.i: 0.479; 1.d.iii: 0.450; 1.d.v: 0.408; 1.d.vii: 0.381), as seen for the 

models with one CFR (Table 2). Overall, the 4- and 7-day delayed “decay” models with a 

constant CFR and fixed outbreak start date (𝜏0) (1.d.iv and 1.d.vi) yielded predicted cumulative 

case values that best fit the observed data, with the 7-day delayed version (1.d.vi) yielding a 

better fit for deaths (Table 3). Therefore, in all subsequent models, we assumed the first 
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intervention took effect 7 days after its implementation and there was no change in case fatality 

rate (𝑓1 = 𝑓0). 

  When comparing the model where both interventions have decaying effects on 

transmission (2.a.ii) to that where only the first intervention has an effect (2.a.i), we found that 

the former produced a significantly better fit to the “as reported” dataset — not just overall and 

for the second time period (October 15th – December 4th), but also for the first time period 

(September 24th – October 14th) (Table 3). This "two decay" model (2.a.ii) estimated a slightly 

lower transmission rate (𝛽1 = 0.395) and a smaller decay rate for the first intervention (k1 = 

0.032) compared to the "decay" model for September 24th – October 14th (1.d.iv: 𝛽1 = 0.399; 

k1= 0.061) (Table 2). Accounting for a delayed effect of the second intervention with no change 

in CFR (2.b.i-iii) did not provide a better fit; however, the model with a 4-day delay and 

changing CFR (2.c.ii) did fit the data better (Figure 4) (Table 3). For the 0, 4, 7, and 10-day 

delayed "two decay, CFR change" models (2.c.i-iv), the estimates of 𝛽1 and k1 were slightly 

lower than their "two decay" model counterparts (2.a.ii, 2.b.i-iii), but the estimates for k2 were 

comparable (Table 2). For all the "two decay, CFR change" models (2.c.i-iv), the CFR started 

high (53.6 – 56.3%) then decreased (to 35.1-39.4%) (Table 2). For all the "two decay" models 

(2.a.ii, 2.b.i-iii, 2.c.i-iv), regardless of days delayed or number of case fatality rates, the R0 value 

stayed in the window of 1.36 to 1.38 (Table 2). 

 While the "two decay" models provided good fits overall, they were unable to capture the 

trend seen in the data around October 15th – October 25th, where the rate of new cases decreased 

and then rapidly increased (Figure 4). This trend was captured, however, when accounting for a 

diminished effect of the first intervention on transmission (Figure 5). Indeed, the "two decay, 

diminished fx" models (3.a.i-iii) all produced considerably lower MSE values for cumulative 
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cases and deaths, overall and by time period. Particularly for the October 15th – December 4th 

time period, MSE values for cumulative cases dropped from 75.2-84.6 (2.c.ii-iv) to 12.1-20 

(3.a.i-iii) and MSE values for deaths were cut in half, going from 8.18-8.77 (2.c.ii-iv) to 3.64-

4.84 (3.a.i-iii) (Table 3). All three of these "two decay, diminished fx" models (3.a.i-ii) yielded 

slightly higher initial transmission estimates (𝛽1) than their "two decay" counterparts (2.c.ii-iv); 

however, they also yielded increased decay rates (k1 and k2) (Table 2). None of these models 

produced the best fit for incidence, case, and death counts; rather, each one had the best MSE 

value for either daily incidence counts, cumulative case counts, or cumulative death counts 

(Table 3). This tradeoff between fitting the model to cumulative cases or deaths was also 

apparent in the graph, where the model with the best fit for cumulative case counts had the worst 

fit for cumulative death counts, particularly at the end of the outbreak (Figure 5) (Figure S2). The 

"two decay, diminished fx, CFR change" models (3.b.i-iii) all produced better fits for cumulative 

cases and deaths than the "two decay, diminished fx” models (3.a.i-iii). Particularly, the “CFR 

change” models yielded better fits for the death counts during October 10th – October 31st 

(Figure 5). There was, however, no clear best-fit between the “CFR change” models with 4, 7, 

and 10-day delayed decays (Table 3). For all the "two decay, diminished fx" models, regardless 

of days delayed or number of CFRs (3.a.i-iii, 3.b.i-iii), the R0 value stayed in the window of 1.39 

to 1.41 (Table 2). While this was slightly above the values of the "two decay" models that did not 

account for diminished effects of the first intervention (2.a.ii, 2.b.i-iii, 2.c.i-iv), it was the same 

as the R0 estimate from all the "decay" models run on the first portion of the data (September 

24th – October 14th) where outbreak start date was set or estimated as August 7th (1.b.iii-iv, 

1.c.ii, 1.c.iv, 1.c.vi, 1.d.ii, 1.d.iv, 1.d.vi, 1.d.viii) (Table 2). 
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Discussion 

 Modeling diseases throughout the course of an outbreak is an important step to 

understand how quickly the disease is spreading, whether interventions are having an effect, and 

if additional or alternative interventions should be put into place. Unfortunately, there are many 

challenges in such modeling endeavors, particularly during the early phase of the outbreak. Here, 

we present a modeling framework that can account for delayed or diminished effects of multiple 

interventions, changing case fatality rates, and unknown outbreak start dates. We then fit this 

modeling framework to data from the 2022 SVD outbreak in Uganda to examine how 

accounting, or not accounting, for these factors can affect estimates of disease spread. 

Our work suggests that treating the outbreak start date (the date of the primary case’s 

symptom onset) as a free parameter — as is often necessary early in an outbreak when this date 

is unknown — can have a significant effect on the estimates of disease transmission. Further, the 

effects of treating outbreak start date as a free versus a fixed parameter vary depending on model 

type and data used. When the data onboarding period was included, the “base” models with 

known and unknown outbreak start dates had similar parameter estimates, whereas the “decay” 

models had quite different estimates. Comparatively, when the onboarding data period was 

excluded, the “decay” models had similar parameter estimates and the outbreak start date was 

accurately estimated when treated as a free parameter. This lack of uniform effect can make it 

difficult to account for the possible effects of having an unidentified primary case, and therefore 

an unknown outbreak start date. 

Whether or not onboarding data are included, the decay model with a fixed outbreak start 

date estimated a higher transmission rate than the base model; this suggests that excluding 

intervention effects in early phase models may produce underestimated values for R0. The 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.27.23291973doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.27.23291973
http://creativecommons.org/licenses/by-nd/4.0/


amount of delay included in a model before the effects of an intervention are seen can also 

impact the R0 estimate. R0 estimates were similar for delay models with a fixed outbreak start 

date; however, when the start date was unknown, models with longer delays estimated an earlier, 

more gradual beginning of the outbreak. For both fixed and free outbreak start dates, the longer 

the delay in observed effect after the implementation of an intervention, the more pronounced 

that decaying effect can be on transmission. Including the diminished effect of an intervention 

can also yield more pronounced decaying effects on transmission, but initial transmission rate 

estimates are higher. Not accounting for these diminished effects when modeling an outbreak 

could cause underestimates of both the intensity of disease spread and the efficacy of an 

intervention. 

 Allowing for a change in fatality rate later in an outbreak can also provide a better model 

fit. For diseases with a high CFR, such as SVD, early CFR estimates are likely to be inflated 

from retrospective case/death reporting, with an eventual decrease over the course of the 

outbreak (12, 13). This can result in CFR being underestimated during increases in case counts 

due to the previously reported underestimation bias during outbreak peaks from the delay 

between disease onset and outcome (i.e., death or recovery) (12, 13, 62). Indeed, there can be 

equivalent time-based changes for diseases with lower CFRs as well, such as the complete 

decoupling in trends between reported cases and deaths due to underreporting of the former 

during the COVID-19 outbreak (63, 64). CFR values can also decrease during the outbreak due 

to the impact of interventions, such as contact tracing efforts. These efforts can decrease the time 

between symptom onset and case reporting, increasing an individual’s chance of recovery and 

causing a change in the relationship between case counts and death counts due to quicker case 

detection. This change in relationship between case and death counts highlights the difficulty of 
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using “date of reporting” data rather than “date of onset” data as well as the difficulty in trying to 

adjust the former to better reflect the latter. 

 Changes in case and death count trends over the course of the outbreak can also affect the 

maximum likelihood estimates (MLE) for models, as case and death counts contribute equally to 

the estimate. This tradeoff between fitting to cases or deaths can especially be seen with our 

diminished effects models, where a different model’s predictions were closest to the observed 

counts for daily incidence and cumulative cases and deaths. Accounting for the outbreak start 

date, changing case fatality rates, and diminished intervention effects can have important impacts 

on the transmission and decay rate estimates, particularly at the beginning of an outbreak. While 

excluding these factors can lead to large differences in R0 estimates, their inclusion makes it 

possible to accurately estimate R0 at the beginning of an outbreak, as seen for our best-fit decay 

model with a 7-day delay run on the short dataset (September 24th – October 14th). Interestingly, 

all models run on the full dataset (September 24th – December 4th) had precise R0 estimates, 

demonstrating the robustness of R0 as a measure of disease spread when examining data from the 

entire outbreak.      

As is the case with any population-level disease model, simplifying assumptions had to 

be made for our models, and thus, our R0 estimates must be considered carefully. However, 

given that models like these are often the ones used at the beginning of an outbreak to provide 

early R0 estimates and policy recommendations, we believe it is important to provide the best 

possible framework for producing accurate estimates though an SEIDR model. Within the setting 

of our case study, these estimates should not be used as definite values for this SVD outbreak as 

incubation and infectiousness rate were fixed based on sparse empirical data. We chose to use 

these values to minimize the already large number of free parameters in our model, particularly 
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given that our primary goal was to compare models and develop a modeling framework rather 

than to provide exact estimates of R0 for the outbreak. Finally, as with any dataset being reported 

and compiled at the beginning of an outbreak, there were trivial inconsistencies in the data 

reported, as mentioned in the Methods section and further cataloged in Text S1. 

Future steps for producing accurate and robust estimations of epidemic potential include 

examining more case studies to determine whether the comparative effects seen here are 

consistent across outbreaks. When examining future case studies, alternative methods for 

calculating MLE should be considered, such as using only cumulative cases, a weighted value 

where cumulative cases are given more importance than cumulative deaths, or a value that 

accounts for the eventual lagging trend of death counts. Determining best-fit models using MSE 

by time period was also an imperfect method.  For example, when comparing the decay models 

for the datasets with and without data from the onboarding period, the first had a better MSE 

value, but this turns out to be only due to the first two data points, with the second version fitting 

better for the rest of the data points. It may be worth considering daily MSE values or taking 

graphical outputs into account rather than relying on MSE when determining the best-fit model. 

Modeling the beginning of an outbreak is a difficult endeavor — accounting for sparse 

data, retrospective case reporting, unknown primary case date, and more. Regardless, it is 

necessary to have tools that can estimate transmission intensity and determine the efficacy of 

multiple intervention efforts. Here, we provide a modeling framework that aims to account for 

these issues and we use a case study of SVD in Uganda to determine how inclusion of these 

effects can impact R0 estimates. While many challenges remain in modeling disease spread 

throughout the course of an outbreak, this work provides an important step on the path to 

accurate and robust estimations of epidemic potential. 
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Figures and Tables 

 

Figure 1: Changes over time in epidemic case counts, Re estimates, and CFR values. (a) 

Difference between onset and capture date over time. (b) Estimated Re over time using case 

counts as recorded and by onset date. (c) Case fatality ratio (CFR) values over time using as 

cases and only confirmed cases. 

 

Figure 2: Simulated cumulative case counts for base and decay models with 𝜏0 as a fixed or free 

parameter run from (a) 9/20 – 10/14 and (b) 9/24 – 10/14. 
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Figure 3: Simulated cumulative case counts for models run from 9/24 – 10/14 (a) base vs. decay 

and (b) decay with various delay amounts. 

 
Figure 4: Simulated cumulative case counts for ‘Two decay’ models run from 9/24 – 12/4 with 

various delay amounts and (a) one or (b) two fatality rates. 
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Figure 5: Simulated cumulative case and death counts for ‘Two decay’ models run from 9/24 – 

12/4 with diminished effects of the first intervention and (a) one or (b) two fatality rates.
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Table 1: List of models run. 
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Table 2: Maximum Likelihood Estimates (MLE) for each model. 
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Table 3: Mean Squared Error (MSE) values for cumulative cases, cumulative deaths, and daily 

incidence during the periods from 9/24 – 10/14, 10/15 – 12/4, and overall (9/24-12/4). Lowest 

MSE value is in red for each section of models. 

 
  

Model Overall MSE (9/24 – 12/4) 9/24* – 10/14 MSE 10/15 – 12/4 MSE 

 Cases Deaths Incidence Cases Deaths Incidence Cases Deaths Incidence 

1.a.i --- --- --- 44.96 7.1 15.86 --- --- --- 
1.a.ii --- --- --- 70.12 11.97 16.5 --- --- --- 

1.a.iii --- --- --- 10.76 11.96 12.18 --- --- --- 

1.a.iv --- --- --- 20.35 5.12 14.1 --- --- --- 

          

1.b.i --- --- --- 21.1 2.78 15.6 --- --- --- 
1.b.ii --- --- --- 72.0 12.9 16.6 --- --- --- 

1.b.iii --- --- --- 13.1 4.62 13.8† --- --- --- 

1.b.iv --- --- --- 12.5† 4.15 14.0 --- --- --- 

          

1.c.i --- --- --- 17.1 5.00 14.1 --- --- --- 

1.c.ii --- --- --- 11.8† 4.79 13.7 --- --- --- 

1.c.iii --- --- --- 13.3 4.35 14 --- --- --- 

1.c.iv --- --- --- 11.8† 5.53 13.5† --- --- --- 
1.c.v --- --- --- 14.9 3.82† 14.6 --- --- --- 

1.c.vi --- --- --- 14.3 6.41 13.9 --- --- --- 

          

1.d.i --- --- --- 13.8 5.81 12.9 --- --- --- 

1.d.ii --- --- --- 12.7 3.62† 13.9 --- --- --- 

1.d.iii --- --- --- 12.6 5.42 12.5† --- --- --- 

1.d.iv --- --- --- 12† 3.94 13.7 --- --- --- 

1.d.v --- --- --- 12† 4.84 13.4 --- --- --- 

1.d.vi --- --- --- 12.1 4.4 13.6 --- --- --- 
1.d.vii --- --- --- 14.4 4.2 14.3 --- --- --- 

1.d.viii --- --- --- 14.4 5.18 14.0 --- --- --- 

          

          

2.a.i 101.3 13.41 10.97 46.8 25.46 14.95 124.1 8.36 9.31 
2.a.ii 74.5 12.6 10.26 42 17.6 14.25 88 10.4 8.59 

          

2.b.i 75.3† 12.1 10.29† 43.3† 23† 14.67† 88.7† 7.6 8.46 

2.b.ii 87.2 11.31 10.59 43.6 26.34 14.83 105.5 5.02 8.82 

2.b.iii 81.7 12.7 10.83 45.5 29.44 15 96.9 5.49 9.08 

          

2.c.i 67.1 8.98 10.21 37.5† 9.29 14.58† 79.4 8.85† 8.38 

2.c.ii 65.7 11 10.15 43.2 12.2 14.88 75.2 10.5 8.18 

2.c.iii 73.2 12.4 10.43 45.9 15.9 14.98 84.6 10.9 8.52 

2.c.iv 68.4 14.4 10.64 47.8 17.7 15.11 77 13.1 8.77 

          

          

3.a.i 15.3 10.52 7.31 23 9.52 13.21 12.1 10.94 4.84 
3.a.ii 19.8 9.17 6.8 19.3 10.95 13.29 20 8.42 4.08 

3.a.iii 17 10.6 6.48 22.5 10.1 13.26 14.6 10.8 3.64 
          

3.b.i 13.4 4.12 7.59 13.1 5.64 13.65 13.6 3.49 5.05 

3.b.ii 10.21 4.89 6.65 12.19 5.62 13.5 9.39 4.58 3.78 
3.b.iii 11.6 6.59 6.4 12.8 5.65 13.48† 11.1 6.99 3.44 
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Table 4: Goodness of fit for case counts during the periods from 9/24 – 10/14, 10/15 – 12/4, and 

overall (9/24-12/4). Pearson goodness-of-fit statistic, df, and p value are provided for each 

model. Lowest chi-squared statistic (and highest p-value) is in red for each section of models. 

 
  

Model Overall MSE (9/24 – 12/4) 9/24* – 10/14 MSE 10/15 – 12/4 MSE 
 X2 df p-value X2 df p-value X2 df p-value 

1.a.i --- --- --- 13.66 17 0.6908 --- --- --- 

1.a.ii --- --- --- 23.73 17 0.1269 --- --- --- 

1.a.iii --- --- --- 3.01 17 0.9999 --- --- --- 

1.a.iv --- --- --- 7.04 17 0.9830 --- --- --- 

          

1.b.i --- --- --- 7.48 17 0.9764 --- --- --- 
1.b.ii --- --- --- 22.47 17 0.1672 --- --- --- 

1.b.iii --- --- --- 4.50 17 0.9989 --- --- --- 

1.b.iv --- --- --- 4.34† 17 0.9991† --- --- --- 
          

1.c.i --- --- --- 5.62 17 0.9954 --- --- --- 

1.c.ii --- --- --- 3.94 17 0.9995 --- --- --- 

1.c.iii --- --- --- 4.51 17 0.9988 --- --- --- 

1.c.iv --- --- --- 3.76† 17 0.9997† --- --- --- 

1.c.v --- --- --- 5.11 17 0.9974 --- --- --- 

1.c.vi --- --- --- 4.35 17 0.9991 --- --- --- 

          

1.d.i --- --- --- 4.28 17 0.9992 --- --- --- 

1.d.ii --- --- --- 4.39 17 0.9990 --- --- --- 

1.d.iii --- --- --- 3.51† 17 0.9998† --- --- --- 

1.d.iv --- --- --- 4.02 17 0.9995 --- --- --- 

1.d.v --- --- --- 3.74 17 0.9997 --- --- --- 

1.d.vi --- --- --- 3.89 17 0.9996 --- --- --- 
1.d.vii --- --- --- 4.72 17 0.9985 --- --- --- 

1.d.viii --- --- --- 4.46 17 0.9989 --- --- --- 

          

          

2.a.i 58.82 60 0.5189 14.03 17 0.6647 44.79 42 0.3557 

2.a.ii 44.06 60 0.9390 11.15 17 0.8486 32.91 42 0.8414 

          

2.b.i 45.77† 60 0.9126† 12.53† 17 0.7673† 33.24† 42 0.8309 

2.b.ii 51.72 60 0.7681 13.40 17 0.7090 38.32 42 0.6335 

2.b.iii 50.55 60 0.8027 14.76 17 0.6124 35.78 42 0.7394 
          

2.c.i 41.52 60 0.9669 12.13 17 0.7920 29.38 42 0.9292 

2.c.ii 42.68 60 0.9558 14.28 17 0.6474 28.40 42 0.9461 

2.c.iii 47.37 60 0.8818 16.02 17 0.5224 31.35 42 0.8857 

2.c.iv 45.91 60 0.9102 16.40 17 0.4959 29.51 42 0.9269 

          

          

3.a.i 10.83 60 1.0000 6.66 17 0.9876 4.17 42 1.0000 

3.a.ii 11.71 60 1.0000 5.64 17 0.9953 6.07 42 1.0000 

3.a.iii 11.04 60 1.0000 6.38 17 0.9903 4.66 42 1.0000 

          

3.b.i 8.92 60 1.0000 4.28 17 1.0000 4.64 42 1.0000 

3.b.ii 6.79 60 1.0000 3.85 17 1.0000 2.94 42 1.0000 

3.b.iii 7.49 60 1.0000 4.00 17 1.0000 3.50 42 1.0000 
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Supplementary Materials 
 

Text S1: Data inconsistency issues 

-Situation Report 20 (10/9/22): 

-big jump in CFR following data cleaning and harmonization, 6 outcomes have been 

updated as deaths’ 

-Situation Report 68 (12/4/22): 

-“following a data reconciliation exercise between case management and surveillance, 

one case previously classified as ‘dead’ is re-classified as ‘recovered’” 

-Situation Report 93 (1/11/23): 

 -graph states that 20 probable deaths occurred before Sept 13th, but only 18 cases seen 

 

-Contact tracing values changing after contacts have ceased being added: 

-Situation Report 77 (12/18/22): 

-top lists 4525 contacts completing 21-day follow-up at top, tables has 4793 

contacts listed and 4524 contacts listed as completing follow-up 

-Situation Report 78 (12/19/22): 

-top lists 4525 contacts completing 21-day follow-up at top, has all contacts listed 

as completing follow-up in table (totals 4793) 

-Situation Report 80 (12/23/22): 

-now listed 4793 contacts completing 21-day follow-up at top, has all contacts 

listed as completing follow-up in table 

 

-Situation Report 71 (12/11/22): 

-in contact tracing table, Jinja has 536 contacts listed and 392 contacts that 

completed 21-day follow-up 

-Situation Report 73 (12/13/22): 

-in contact tracing table, Jinja has 536 contacts listed and all contacts are now 

listed as completing 21-day follow-up (note that there are currently only 6 

contacts listed as active, so unlikely all contacts in Jinja finished follow-up 

between these two reports) 

 

→ When calculating the total contacts listed and having finished 21-day follow-up, 4793 

used for total listed, 4380 listed as finishing follow-up (4524 listed in Situation Report 77 

table - 144 added to Jinja in Situation Report 73 table) → 91% completed follow-up  
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Text S2: Data sources 

-Contact tracing intervention data is from the situation reports 

https://www.afro.who.int/countries/publications?country=879 

-Instating of lockdown is from presidential address  

https://www.yowerikmuseveni.com/address-nation-measures-stem-spread-ebola 

-Extension of lockdown is from another presidential address 

https://www.mediacentre.go.ug/media/he-presidents-speech-ebola-virus-disease-outbreak 

 

-Case and death count data: 

- Sept 19 → WHO Africa news report - outbreak declaration 

https://www.afro.who.int/countries/uganda/news/uganda-declares-ebola-virus-

disease-outbreak  

 - Sept 21 → (WHO Africa news report) 

https://www.afro.who.int/countries/uganda/news/who-bolsters-ebola-disease-

outbreak-response-uganda 

 - Sept 22-25 → Ministry of Health Uganda twitter updates 

  https://twitter.com/MinofHealthUG  

 - Sept 27 → WHO Africa twitter update 

  https://twitter.com/WHOAFRO  

 - Sept 29 → Situation report #10 

- Sept 30 → Ministry of Health Uganda twitter update (posted Oct 2nd but for cases since 

Sept 20th) 

 https://twitter.com/MinofHealthUG  

- Oct 1 onward → situation reports 12 and up 

  https://www.afro.who.int/countries/publications?country=879 (landing page) 
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Figure S1: Flowchart depicting the model parameterization process. 

 
 

Figure S2: Recorded (a) cumulative case, (b) cumulative death, and (c) daily incidence counts 

with time-specific MSE values for ‘Two decay’ models run from 9/24 – 12/4 with diminished 

effects of the first intervention and one or two fatality rates. 
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Table S1: Mean Squared Error (MSE) values comparing cumulative case counts from the “as 

reported” dataset to those from the “MoH onset” data shifted 0, 2, 4, and 6 days forward. Values 

are provided for 9/24 – 10/14, 10/15 – 12/4, and the overall period (9/24-12/4), with the lowest 

MSE value for each date range in red. 

Shifted 

Symptom 

Onset 

Case count MSE 

 Overall  

(9/24 – 12/4) 

9/24 – 10/14 10/15 – 12/4 

Onset 285.97 144.64 395.89 

Onset + 2 91.85 73.62 103.70 

Onset + 4 13.88 22.29 8.00 

Onset + 6 60.57 6.57 96.57 

 
Table S2: Mean Squared Error (MSE) values comparing cumulative case counts from the “as 

reported” dataset to those from the “MoH onset” data shifted 0, 2, 4, and 6 days forward. Values 

are provided for 9/24 – 10/14, 10/15 – 10/27, 10/28 – 12/4, and the overall period (9/24-12/4), 

with the lowest MSE value for each date range in red. 

Shifted 

Symptom 

Onset 

Case count MSE 

 Overall  

(9/24 – 12/4) 

9/24 – 10/14 10/15-10/27* 10/28 – 12/4 

Onset 285.97 144.64 645.55 3.57 

Onset + 2 91.85 73.62 170.33 3.75 

Onset + 4 13.88 22.29 9.50 5.75 

Onset + 6 60.57 6.57 165.45 20.80 

* October 27th was chosen as the place to split the data based on trends seen in Figure 1a. 

 

Table S3: Daily Chi-squared Test of Homogeneity p-values comparing case fatality ratio (CFR) 

from the “as reported” and the “confirmed reported only” datasets. 

Date p value 

9/21/22 0.2967 

9/22/22 0.0436* 

9/23/22 0.00003*** 

9/24/22 0.0338* 

9/25/22 0.0268* 

9/28/22 0.0184* 

9/29/22 0.0215* 

9/30/22 0.0259* 

10/1/22 0.0159* 

10/2/22 0.0147* 

10/3/22 0.0147* 
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10/4/22 0.0194* 

10/6/22 0.0187* 

10/9/22 0.0671 

10/10/22 0.0740 

10/13/22 0.0756 

10/14/22 0.0854 

10/16/22 0.1016 

10/17/22 0.1126 

10/18/22 0.1212 

10/19/22 0.1129 

10/20/22 0.1323 

10/21/22 0.1169 

10/22/22 0.1182 

10/23/22 0.0951 

10/24/22 0.1042 

10/25/22 0.0974 

10/26/22 0.0845 

10/27/22 0.0805 

10/29/22 0.0872 

10/30/22 0.1035 

10/31/22 0.1392 

11/1/22 0.1575 

11/2/22 0.1707 

11/3/22 0.1774 

11/5/22 0.1897 

11/6/22 0.1991 

11/7/22 0.1977 

11/10/22 0.2031 

11/12/22 0.2070 

11/13/22 0.2056 

11/14/22 0.2043 

11/27/22 0.2095 

* <0.05, ** <0.01, *** < 0.001 
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