Abstract
Common genetic variation throughout the genome together with rare coding variants identified to date explain about a half of the inherited genetic component of epithelial ovarian cancer risk. It is likely that rare variation in the non-coding genome will explain some of the unexplained heritability, but identifying such variants is challenging. The primary problem is lack of statistical power to identifying individual risk variants by association as power is a function of sample size, effect size and allele frequency. Power can be increased by using burden tests which test for association of carriers of any variant in a specified genomic region. This has the effect of increasing the putative effect allele frequency.
PAX8 is a transcription factor that plays a critical role in tumour progression, migration and invasion. Furthermore, regulatory elements proximal to target genes of PAX8 are enriched for common ovarian cancer risk variants. We hypothesised that rare variation in PAX8 binding sites are also associated with ovarian cancer risk, but unlikely to be associated with risk of breast, colorectal or endometrial cancer.
We have used publicly-available, whole-genome sequencing data from the UK 100,000 Genomes Project to evaluate the burden of rare variation in PAX8 binding sites across the genome. Data were available for 522 ovarian cancers, 2560 breast cancers, 2465 colorectal cancers and 729 endometrial cancers and 2253 non-cancer controls. Active binding sites were defined using data from multiple PAX8 and H3K27 ChIPseq experiments.
We found no association between the burden of rare variation in PAX8 binding sites (defined in several ways) and risk of ovarian, breast or endometrial cancer. An apparent association with colorectal cancer was likely to be a technical artefact as a similar association was also detected for rare variation in random regions of the genome.
Despite the null result this study provides a proof-of -principle for using burden testing to identify rare, non-coding germline genetic variation associated with disease. Larger sample sizes available from large-scale sequencing projects together with improved understanding of the function of the non-coding genome will increase the potential of similar studies in the future.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Cancer Research UK (PRCPJT\100006 NIH National Cancer Institute (R01CA244569, R01CA211575, R01CA211707, R01CA207861)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Data access was granted to application to Genomics England 100,000 Genomes Project which has ethical approval from the HRA Committee East of England: Cambridge South (REC Ref 14/EE/1112).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Germline genetic data used in this project are available through application to the Genomics England 100,000 Genomes Project. CHiPSeq data are publicly available as described in the methods.