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Abstract 

Common genetic variation throughout the genome together with rare coding variants identified to date 
explain about a half of the inherited genetic component of epithelial ovarian cancer risk.  It is likely that 
rare variation in the non-coding genome will explain some of the unexplained heritability, but identifying 
such variants is challenging.  The primary problem is lack of statistical power to identifying individual risk 
variants by association as power is a function of sample size, effect size and allele frequency.  Power can be 
increased by using burden tests which test for association of carriers of any variant in a specified genomic 
region.  This has the effect of increasing the putative effect allele frequency. 

PAX8 is a transcription factor that plays a critical role in tumour progression, migration and invasion.  
Furthermore, regulatory elements proximal to target genes of PAX8 are enriched for common ovarian 
cancer risk variants.  We hypothesised that rare variation in PAX8 binding sites are also associated with 
ovarian cancer risk, but unlikely to be associated with risk of breast, colorectal or endometrial cancer. 

We have used publicly-available, whole-genome sequencing data from the UK 100,000 Genomes Project to 
evaluate the burden of rare variation in PAX8 binding sites across the genome.  Data were available for 522 
ovarian cancers, 2560 breast cancers, 2465 colorectal cancers and 729 endometrial cancers and 2253 non-
cancer controls.  Active binding sites were defined using data from multiple PAX8 and H3K27 ChIPseq 
experiments. 

We found no association between the burden of rare variation in PAX8 binding sites (defined in several 
ways) and risk of ovarian, breast or endometrial cancer.  An apparent association with colorectal cancer 
was likely to be a technical artefact as a similar association was also detected for rare variation in random 
regions of the genome. 

Despite the null result this study provides a proof-of -principle for using burden testing to identify rare, 
non-coding germline genetic variation associated with disease.  Larger sample sizes available from large-
scale sequencing projects together with improved understanding of the function of the non-coding genome 
will increase the potential of similar studies in the future. 
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Introduction 

Genome-wide association studies (GWAS) conducted by the Ovarian Cancer Association Consortium (OCAC) 
identified 42 common epithelial ovarian cancer (EOC) susceptibility alleles1 and rare coding variants in at 
least 10 genes are known to be involved in susceptibility to epithelial ovarian cancer2.  The high-penetrance 
genes BRCA13 and BRCA24 were identified by linkage studies in the 1990’s; protein truncating variants in 
these genes confer a substantial lifetime risk of EOC as well as breast cancer and other cancers5,6.  Since 
then, truncating variants in BRIP1, FANCM, PALB2, RAD51C and RAD51D have been shown to confer more 
moderate risks by using candidate-gene case-control sequencing7.  The uncommon and rare, high- and 
moderate penetrance alleles identified to date explain about one quarter of the inherited component of 
EOC susceptibility with another 5 percent explained by the known common risk alleles2.  Genome-wide 
heritability analyses have estimated that the set of common variants that are tagged or captured by the 
standard genome-wide genotyping arrays explains about 40 percent of the familial aggregation – the so-
called chip heritability2.  The characteristics of the alleles that account for the remaining familial 
aggregation are not known; analyses of whole-genome data suggest that a substantial portion is explained 
by rare variants, particularly those in regions of low linkage disequilibrium 8.   

The identification of rare genetic variants associated with disease susceptibility presents a considerable 
challenge.  In principle it would be possible to sequence a very large number of cases and controls and to 
evaluate the disease associations on a variant-by-variant basis.  This, in essence, has been the approach to 
common risk variant discovery in genome-wide association studies.  However, the cost of sequencing tens 
of thousands of cases and controls remains prohibitively expensive.  Even then the statistical power will be 
limited to detect the association on individual rare variants. Candidate gene sequencing was successful in 
identifying uncommon, loss-of-function variation associated with disease risk because it was been possible 
to apply gene-based burden tests in which any putative protein truncating variant in a gene is treated as 
equivalent and so the combined frequency of the variants is sufficient for reasonable sample sizes to have 
adequate power.  The association of loss-of-function variants in BRIP1, PALB2, RAD51C, and RAD51D were 
identified using this approach. 

Burden testing can also be applied to the non-coding genome.  However, it is less clear what the unit for 
genomic analysis ought to be.  One possibility is to use functional annotation to define non-contiguous 
genomic regions for burden testing.  Such units could include all the binding sites for transcription factors 
of interest, regions of active chromatin in tissues of interest, regions of open chromatin in tissues of 
interest and regions that are frequently somatically mutated in ovarian cancer. The majority of known 
germline risk alleles associated with heritability of EOC risk is in non-protein coding regions, mostly located 
in active regulatory elements9.  Putative regulatory elements proximal to target genes of critical 
transcription factors that are implicated in ovarian cancer or precursor cell biology are enriched for ovarian 
cancer risk SNPs, highlighting a central role for the transcription factor paired box 8 (PAX8)10.  PAX8 is highly 
expressed in high-grade serous ovarian cancers and plays a critical role in tumour progression, migration 
and invasion11.  PAX8 is also expressed in secretory epithelial cells of the fallopian tube, the precursor 
tissues of high-grade serous ovarian cancer 12.  Thus, rare germline genetic variation in PAX8 bindings sites 
are candidate susceptibility alleles for EOC.   

In addition to the PAX8 binding sites, we are also interested in active regions of the genome, where DNA is 
highly accessible, such as those identified by the histone H3K27 acetylation mark13.  It has been shown that 
this important histone mark can distinguish between active and poised enhancer elements14, which tend to 
cluster near the genes they regulate.  Genes proximal to H3K27ac marks also show higher expression 
levels13.  Transcription factors such as PAX8 bind only to a subset of enhancers in a given tissue and 
H3K27ac marks can be used to select some of these enhancer locations.  Previous analyses have shown that 
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more than 80 percent of cell type specific regulatory elements lie in putative enhancers, which drive the 
cell type specific gene expression2.  

The aim of this study was to use publicly available whole genome sequencing data from the UK 100,000 
Genomes Project to evaluate the association between rare variation in active PAX8 binding sites and 
epithelial ovarian cancer risk, using a burden testing approach and a case-control study design.  We also 
evaluated the association with breast, colorectal and endometrial cancer, with the goal of investigating the 
relevance of these target regions in other types of cancer. 

Methods 

Samples 

The UK 100,000 Genomes Project { https://www.genomicsengland.co.uk/about-genomics-england/the-
100000-genomes-project/} was established to sequence 100,000 genomes from around 85,000 NHS 
patients affected by a rare disease, or cancer.  Recruitment of participants to the 100,000 Genomes Project 
was completed in 2018, with the 100,000th sequence achieved in December 2018.  Germline whole 
genome sequencing has been carried out on 581 cases of EOC as part of the project (v15), from which 522 
were included in the full analysis after filtering 59 outliers (see Methods - Sample quality control). 

The majority of EOC was classified as high-grade serous carcinoma (n = 296); the number of cases of other 
histotypes are described in Table 1Error! Reference source not found..  We also analysed 2,984 cases of 
breast cancer, 2,696 cases of colorectal cancer and 836 cases of endometrial cancer, respectively. 

 

Table 1: Number of epithelial ovarian cancer patients by histotype (total 522) 

Histotype Number of individuals Percent 
High grade serous* 296 57% 
Low grade serous 25 5% 
Clear cell 33 6% 
Endometrioid 54 10% 
Mucinous 29 6% 
Unknown 72 14% 
Other 13 2% 

* Includes those with carcinosarcoma and serous carcinoma of unspecified grade.   

 

Unaffected controls have not been sequenced as part of the Project.  However, many of the Project 
samples are from individuals with rare disorders that are extremely unlikely to share heritability with 
epithelial ovarian cancer and can be used as controls for the association analysis.  We selected 2,750 
patients as controls, from Genomics England main programme v6, with diseases such as myopathies and 
epilepsies, whose aetiology is multifactorial and unlikely to be related to cancer (Supplementary Table 1). 
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Supplementary Table 1: Diagnoses for 2,253 individuals selected as controls (497 were excluded as outliers) 

Disease Individuals Disease Individuals 

Amyotrophic lateral sclerosis 23 Epilepsy plus other features 580 

Arthogryposis 40 Epileptic encephalopathy 112 

Brugada syndrome 61 Familial focal epilepsy 21 

Complex Parkinsonism 45 Familial genetic generalised epilepsies 61 

Congenital hearing impairment 165 Genetic epilepsies with febrile seizures 8 

Congenital myopathy 120 Hereditary ataxia 352 

Dilated cardiomyopathy 115 Hypertrophic cardiomyopathy 161 

Distal myopathies 38 Limb girdle muscular dystrophy 65 

Early onset dementia 62 Pulmonary arterial hypertension 9 

Early onset Parkinson’s disease 172 Rhabdomyolysis and metabolic muscle 
disorders 

27 

Epidermolysis bullosa 16 
  

 

PAX8 binding sites were identified using PAX8 ChIPseq data from eight cell lines: three benign immortalized 
normal fallopian tube cell lines (FT33, FT194 and FT246)15 and five EOC cell lines (KURAMOCHI, OVSAHO 
and JHOS4 15; GROV1 and HeyA8 16).  PAX8 ChIPseq NarrowPeak formatted files are publicly available from 
the GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79893) for the KURAMOCHI, OVSAHO and JHOS4 
cancer cell lines and the FT33, FT194, and FT246 benign immortalized fallopian tube cell lines.  PAX8 
ChIPseq peaks for IGROV1 and HeyA8, as well as the signal-enriched and normalized files for all cell lines, 
were obtained from the Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute16.  
The number of PAX8 peaks and their genomic coverage for each cell line is shown in Supplementary Table 
2.   

Not all transcription factor binding sites will be active in any given tissue.  Acetylation of histone H3K27 is a 
marker of active promoters and candidate enhancers and colocalizes with regulatory sequences and gene 
activation17.  H3K27ac ChIPseq data were available for five different high-grade serous ovarian cancers and 
two normal fallopian tube epithelium cell lines (FT33 and FT246) 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68104) 18.  The number of H3K27ac ChIPseq 
peaks for each cell line is shown in Supplementary Table 3. 
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Supplementary Table 2: Number of PAX8 binding sites and genomic coverage for each of eight cell lines 

Cell line Number of binding 
sites 

Mean size 
(bp) 

Total genomic 
region covered 

Source/reference 

FT33 3,166 196.3 621,497 15 

FT194 1,621 198.4 321,689 15 

FT246 2,652 191.4 507,616 15 

Kuramochi 6,025 199.6 1,202,709 15 

JHSO4 1,141 208.4 237,874 15 

OVSAHO 5,753 212.9 1,224,830 15 

IGROV1 8,863 734.7 6,512,038 16 

HeyA8 3,374 623.2 2,102,949 16 

Total* 19,097 502.4 9,595,782  

*The total number of regions in all cell lines was 32,595 but the number of contiguous regions is smaller because of overlaps 
between regions in multiple cell lines ChIPseq. 

 

 

Supplementary Table 3: Number of H3K27acetylation peaks and genomic coverage for each of the seven cell 
lines 

Cell line Targets (n) Mean size(bp) Total coverage (bp)  Citation 

HGS_229 70,639 1314.0 92,822,771 19 

HGS_270 64,477 1415.9 91,294,827 19 

HGS_429 69,953 1049.3 73,405,375 19 

HGS_550 45,825 846.1 38,773,963 19 

HGS_561 75,628 1358.0 102,708,894 19 

FT33 74,475 1651.5 123,000,330 18 

FT246 86,534 1813.9 156,969,440 18 

Total 164,268 1603.0 263,372,307  

 

  

Whole genome sequencing data  

Germline whole genome samples were prepared using an Illumina TruSeq DNA Nano and sequenced at 
Illumina facilities using HiSeq X with 150 bases reads at a target of 30X in Genomics England facilities.  Only 
samples with coverage of at least 95 percent of the genome at 15X or above with well mapped reads 
(mapping quality > 10) were included in the analyses.   The Illumina North Star pipeline (version 2.6.53.23) 
was used for primary WGS analysis.  Read alignment against human reference genome GRCh38-Decoy+EBV 
was performed with ISAAC (version iSAAC-03.16.02.19)20, 21 
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Variant calling and quality control  

All samples were processed with GATK Haplotype Caller version 4.0, with the standard thresholds for 
variant calling22.  Variants were filtered out according to several quality criteria: read Depth <= 10; Mapping 
quality <= 20; allele balance <= 0.2 (proportion of alternate alleles) and alternative reads <=5; all variants in 
regions of low complexity.  Low-complexity regions were identified using RepeatMasker23 and blacklisted 
regions from ENCODE24, resulting in the removal of 289,837 regions overlapping our target regions.  
Additional criteria were then used for exclusion of specific indels and single nucleotide variants 
(Supplementary Table 4). 

Supplementary Table 4: Specific criteria for indel and single nucleotide variant exclusion 

  Metric   Depth    Allele balance 
   > 100  60 - 100  <60  >0.75 

 QD  <2.0  <3,5  <4.0    
Indels MQ  <25  <30  <35  <25  
 FS  >50  >45  >40    
 RPRS  <-5  <-4.25  <-3.5    
Single  QD  <1.8  <3.5  <4.0    
nucleotide MQ  <30  <32.5  <35  <25  
variants FS  >50  >45  >40    
 RPRS  <-5.5  <-4.5  <-3.5    

QD = quality by depth; MQ = Mapping Quality ; FS = Phred-scaled p-value using Fisher's exact test to detect strand bias, RPRS = Z-
score from Wilcoxon rank sum test of Alt vs. Ref read position bias.  
 

These thresholds were based on an extensive comparison of concordance of whole exome sequence NGS 
calls with equivalent ChIP genotypes (unpublished).  The rare variants were defined as those frequency 
lower than 0.01 in non-Finnish European samples or variants not reported in the gnomaAD 3.0 database25. 

Sample quality control 

Sample quality control was carried out using the variants falling within the H3K_tum regions (defined in 
results section).  The number of variants carried by each individual in these sets of regions varied from 
about 4,000 to over 20,000 with a long tail distribution (Supplementary Figure 1).  We excluded 1,318 
individuals that carried more than 6,800 rare alleles in the H3K_tum regions (Supplementary Table 5).  
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Supplementary Figure 1: Histogram of the number of variants in H3K_tum regions in all patients  

 
The first plot represents the total number of variants found in all individuals; the blue line is the threshold 
admitted to proceed with further analysis. The second plot provides further details in the distribution of 
variants in H3K_tum regions, in all individuals. 
 

 Supplementary Table 5: Outlier patients removed (>6800 variants in H3K_tum regions) 

Samples Outliers  Included (%)   

Control 497 2253 (82) 

Colorectal 231 2465 (91) 

Breast 424 2560 (86) 

Endometrial 107 729 (87) 

Ovarian 59 522 (89) 
 

Statistical methods 

The number of variants in a given target region was compared across controls and the four cancers 
phenotypes using the non-parametric Kruskal-Wallis test.   Then a pairwise comparison of each cancer 
phenotype with controls was carried out.  We did not correct for multiple testing as the individual 
hypothesis tests are correlated, but given a low prior on the alternative hypothesis it is likely that most 
associations at a nominal P<0.05 would be false positives and so we set a nominal threshold for statistical 
significance at P<10-3.  
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Results 

Defining the genomic region of interest 

Across all the cell lines there were 19,097 peaks covering 9.5MB genomic DNA hereafter referred to as 
PAX8_all with PAX8_ft and PAX8_tum referring to PAX8 ChIPseq peaks in the fallopian tube and tumour cell 
lines respectively (Table 2).  The number of H3K27ac ChIPseq peaks in the fallopian tube (H3K_ft) and 
tumours (H3K_tum) are shown in Table 2 with the numbers for each cell line individually in Supplementary 
Table 3. 

Table 2: Selected genomic regions  

Region Contiguous regions Mean size Total size (bp) 

PAX8 ChIPseq peaks    

All cell lines (PAX8_all) 19,097 502.4 9,595,782 

Fallopian tube cell lines (PAX8_ft) 4,468 199.2 890,331 

Tumour cell lines (PAX8_tum) 17,772 525.2 9,333,999 

H3K27ac ChIPseq peaks    

All cell lines 164,268 1603.3 263,372,307 

Tumour cell lines (H3K_tum) 129,293 1339.1 173,141,434 

Fallopian tube (H3K_ft) 92,298 1813.3 167,368,077 

Medium stringency regions    

All cell lines (MS_all) 13,614 482.1 6,563,955 

Fallopian tube cell lines (MS_ft) 2,672 187.3 500,604 

Tumour cell lines (MS_tum) 11,585 493.7 5,719,946  

High stringency regions    

All cell lines (HS_all) 1,687 182.8 308,523  

Fallopian tube cell lines (HS_ft) 2,701 191.1 516,210 

Tumour cell lines (HS_tum) 947 180.1 170,628 

Random regions    

Random 2K 1,687 182.8 308,523 

Random 50k 1,685 182.9 308,318 

Random Shuffle 1,677 197.8 331,807 

Random H3K_tum 113,888 987.7 112,494,386 

 

We defined target regions based on the degree of overlap between PAX8 ChIPseq peaks and H3K27ac 
peaks, as can be observed in Figure 1.  Medium stringency regions (MS_all) were those where there was 
overlap between H3K27ac marks in at least one of the seven cell lines (tumour or normal fallopian tubes) 
and PAX8 marks in at least one of the eight cell lines (tumour or normal fallopian tubes).  Medium 
stringency fallopian tube regions (MS_ft) were those where there was overlap between H3K27ac marks in 
at least one of the two normal fallopian tube cell lines and PAX8 marks at least one of the three normal 
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fallopian tube cell lines.  Similarly, medium stringency tumour regions (MS_tum) were defined as those 
where there was overlap between H3K27ac marks in at least one of the five tumour cell lines and PAX8 
marks in at least one of the five tumour cell lines.  High stringency regions (HS_all) were defined as those 
where there was overlap between H3K27ac marks in at least three of the seven tumour or normal fallopian 
tube cell lines and PAX8 marks in at least three of the eight tumour or normal fallopian tube cell lines.  High 
stringency fallopian tube regions (HS_ft) were those with at least three overlaps among any of the fallopian 
tube ChIPseqs.  High stringency tumour regions (HS_tum) were those with overlap between H3K27ac marks 
in at least three of the five tumour cell lines and PAX8 marks in at least three of the five tumour cell lines.  
Following our prior experience, high stringency regions selected in this manner provide more robust 
evidence of signal9.     

 

Figure 1: Schematic representation of the genomic regions of interest 

 

Random control regions 

Differential processing of the case and control samples from DNA extraction up to the sequencing and 
quality filters may result in artefactual differences in variant frequencies between cases and controls.  In 
order to counteract the possible inflation of variants in the target regions, several types of control regions 
were created from random genomic sequences with similar characteristics to match the functional regions 
of interest.  Variant frequencies in these random regions are unlikely to differ between cases and controls 
in the absence of functional elements. 

Random sequences were selected to match 1,687 HS_all regions where there was overlap between 3 or 
more H3K27ac ChIPseq marks and 3 or more PAX8 ChIPseq marks.  The criteria for a random sequence 
were that it must: i) be on the same chromosome ii) be the same size iii) similar base content with the ratio 
of the proportion of each base in the random region compared to the functional region being between 0.7 
and 1.3 iv) not collocate with repeatMasker23 or ENCODE blacklisted regions24.  Three types of random 
sequences were then chosen to match the HS_all regions:  For the Random2k regions, a genomic window, 
the size of each of the 1,687 target regions was evaluated, starting at 2,000 bases upstream of the original 
site and moving 10bp upstream until the matching criteria was achieved. The Random50k regions were 
similarly selected starting at 50,000 bases upstream of the original site. Finally, we used bedtools shuffle 26 
and seven different seeds to generate 8,620 regions from which 1,677 were selected to meet the criteria 
above (RandomShuffle regions). 
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A fourth type of random region was also selected to match the H3K_tum regions, using the same criteria as 
above and the same seven seeds for the random algorithm in bedtools shuffle, but the selection was a bit 
more stringent to yield a similar number of regions. The proportion was set between 0.75 and 1.25. This 
way, Random H3K_tum yielded 113,888 regions from the total of 129,293 H3K_tum target regions.   

Association of rare variants in PAX8 binding sites with cancer risk 

The number of variants per sample by variant type (all variants, indels and substitutions) and phenotype in 
each of the eight defined functional regions are shown in Figures 2-4.  There was nominally significant 
heterogeneity in the variant frequency across the controls and four case sets for the H3K_tum, H3K_ft, 
MS_all and MS_tum regions (Table 3).  Pairwise comparisons for each set of cases and controls showed that 
this heterogeneity was being driven by a difference between colorectal cancer cases and controls.  
However, the observed differences were small and similar heterogeneity was seen for the Random 
H3K_tum regions (Supplementary Figure 2).  This suggests that the observed differences are due to 
sequencing batch effects or similar technical artefact rather than any biological difference between cases 
and controls.  When restricting the comparison to single nucleotide variants (Table 4) a similar pattern was 
seen.  There were no nominally significant differences in the frequencies of indels in the target functional 
regions (Table 5). 
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Figure 2: Number of variants per individual by case-control status and defined genomic region 
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Table 3: Kruskal-Wallis P-value for comparison of number of variants in cancer cases compared with 
controls (all variants) 

 

Table 4: Comparison of number of variants in cancer cases compared with controls (Kruskal-Wallis P-value), 
only single nucleotide variation 

Region All cases Colorectal Endometrial Breast Ovarian 

H3K_ft 1.9 x 10-09 3.04 x 10-08 0.92 0.28 0.22 

H3K_tum 2.7 x 10-9 1.2 x 10-7 0.64 0.49 0.18 

PAX8 ChIPseq 0.10 0.041 0.81 0.047 0.94 

MS_all 2.3 x 10-4 9.9 x 10-5 0.93 0.050 0.48 

HS_all 0.74 0.71 0.87 0.42 0.47 

MS_ft 0.97 0.95 0.49 0.98 0.98 

HS_ft 0.18 0.078 0.93 0.77 0.28 

MS_tum 2.6 x 10-4 1.1 x 10-4 0.54 0.068 0.32 

HS_tum 0.82 0.32 0.51 0.96 0.67 

Random2k 0.022 0.42 0.21 0.42 0.013 

Random50k 0.15 0.15 0.23 0.18 0.78 

RandomShuffle 0.57 0.22 0.18 0.35 0.92 

RandomH3K_tum 5.2 x 10-9 5.2 x 10-8 0.34 0.051 0.78 

Region All cases Colorectal Endometrial Breast Ovarian 

H3K_ft 9.5 x 10-12 8.7 x 10-11 0.42 0.12 0.39 

H3K_tum 3.4 x 10-11 3.5 x 10-10 0.77 0.49 0.40 

PAX8 ChIPseq 0.15 0.055 0.96 0.046 0.95 

MS_all 1.3 x 10-4 3.9 x 10-5 0.71 0.025 0.55 

HS_all 0.74 0.71 0.87 0.45 0.51 

MS_ft 0.87 0.78 0.52 0.77 0.53 

HS_ft 0.11 0.045 0.97 0.61 0.33 

MS_tum 1.6 x 10-4 4.1 x 10-5 0.35 0.027 0.43 

HS_tum 0.77 0.34 0.55 0.89 0.59 

Random2k 0.14 0.53 0.68 0.99 0.029 

Random50k 0.10 0.034 0.63 0.077 0.56 

RandomShuffle 0.68 0.22 0.23 0.36 0.83 

RandomH3K_tum 7.7 x 10-11 1.7 x 10-10 0.78 0.0086 0.85 
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Table 5: Comparison of number of indels in cancer cases compared with controls (Kruskal-Wallis P-value) 

 

  

Region All cases Colorectal Endometrial Breast Ovarian 

H3K_ft 6.2 x 10-03 0.66 4.4 x 10-03 0.57 0.026 

H3K_tum 0.014 0.80 0.011 0.16 0.0096 

PAX8 ChIPseq 0.21 0.066 0.45 0.36 0.94 

MS_all 0.47 0.14 0.87 0.65 0.64 

HS_all 0.66 0.84 0.14 0.96 0.78 

MS_ft 0.49 0.38 0.87 0.40 0.079 

HS_ft 0.94 0.69 0.49 0.90 0.88 

MS_tum 0.23 0.10 0.50 0.72 0.58 

HS_tum 0.92 0.86 0.85 0.77 0.47 

Random2k 0.0088 0.50 0.04 0.035 0.085 

Random50k 0.63 0.59 0.12 0.58 0.98 

RandomShuffle 0.38 0.76 0.32 0.47 0.18 

RandomH3K_tum 8.9 x 10-4 0.77 3.8 x 10-4 0.10 0.0087 
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Supplementary Figure 2: Number of variants per individual in Random Regions 
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Discussion 

Rare, germline genetic variation in the non-coding genome is likely to account for a substantial portion of 
the unexplained heritability of many complex traits including ovarian cancer.  Chip genotyping data 
combined with imputation can be used to evaluate rare variant associations, however, many rare variants 
are poorly imputed and whole genome sequencing is the only method to reliably capture all the rare 
variation across the genome.  The evaluation of association for rare, non-coding variation on a variant-by-
variant basis is unlikely to be an effective approach because of the very large number of such variants and 
the limited statistical power to detect association at very stringent levels of statistical significance required 
when the prior probability of any one association is very small.  As with analysis of rare variation in the 
coding sequence, burden testing is an alternative approach to increase statistical power.  However, unlike 
with gene-based burden testing, the best way to define groups of variants in the non-coding genome is not 
clear.  One approach might be to simply combine rare variants within a specific genomic window.  
However, it seems very unlikely that multiple rare variants in any given contiguous genomic window would 
be functionally equivalent and associated with similar risks.  We used an alternative approach, evaluating 
the burden variants in non-contiguous genomic regions that are thought to share some common function.   

Many of the known common risk variants in the non-coding regions are thought to act by affecting 
regulatory elements.  For example, breast cancer risk variants are enriched for binding sites of ESR1, 
FOXA1, GATA3, E2F1 and TCF7L227 and six networks centred on homeobox transcription factor genes at 
17q21.32 and at 2q31 are enriched for EOC susceptibility28.  Thus, binding sites for transcription factors 
thought to be important in ovarian cancer biology would be good candidates for non-contiguous regions of 
the genome that harbour rare susceptibility variants for EOC.   

We used publicly-available, germline, whole genome sequencing data of cancer and rare diseases patients 
to evaluate a hypothesised association between rare variation in putative active PAX8 transcription factor 
binding sites and risk of epithelial ovarian cancer.  Our novel approach of using burden testing across non-
contiguous regions of the genome has the potential to identify uncommon and rare germline genetic 
variants that underpin complex disease susceptibility. We found little evidence to support the hypothesis, 
but several limitations should be considered before considering these results definitive.  First, statistical 
power is likely to be a limiting factor as there were data for only 522 EOC cases.  A second limitation is our 
ability to identify PAX8 binding sites that are truly functional in the relevant tissue.  We have used a variety 
of epigenomic data in an attempt to identify genomic regions that are most likely to be functionally 
relevant and we have used several different definitions to define putative functional regions.  Nevertheless, 
it is likely that for any given definition of functionally relevant regions, a proportion of the binding sites of 
interest are not functional.  It is also not fully understood how much a given variant would affect PAX8 
binding if at all.  Finally, redundancy of binding sites in the pathways activated by PAX89,10 may limit the 
functional effect of a variant that does disrupt PAX8 binding in a relevant tissue.  This misclassification 
could reduce substantially the power to detect a true association.   

Despite the null findings and the limitations of this study, the approach based on burden testing across 
non-contiguous regions of the genome remains promising.  Much large-scale case-control data will become 
available as whole genome sequencing becomes cheaper and this will increase substantially the statistical 
power of this type of study.  Furthermore, improved functional annotation of the non-coding genome will 
lead to a better definition of the likely regions of the genome that are biologically important together with 
a better understanding of which variants are most likely to disturb putative functionality.   
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