Abstract
An increase in the incidence and diagnosis of thyroid nodules and thyroid cancer underscores the need for a better approach to nodule detection and risk stratification in ultrasound (US) images that can reduce healthcare costs, patient discomfort, and unnecessary invasive procedures. However, variability in ultrasound technique and interpretation makes the diagnostic process partially subjective. Therefore, an automated approach that detects and segments nodules could improve performance on downstream tasks, such as risk stratification.Current deep learning architectures for segmentation are typically semi-automated because they are evaluated solely on images known to have nodules and do not assess ability to identify suspicious images. However, the proposed multitask approach both detects suspicious images and segments potential nodules; this allows for a clinically translatable model that aptly parallels the workflow for thyroid nodule assessment. The multitask approach is centered on an anomaly detection (AD) module that can be integrated with any U-Net architecture variant to improve image-level nodule detection. Ultrasound studies were acquired from 280 patients at UCLA Health, totaling 9,888 images, and annotated by collaborating radiologists. Of the evaluated models, a multi-scale UNet (MSUNet) with AD achieved the highest F1 score of 0.829 and image-wide Dice similarity coefficient of 0.782 on our hold-out test set. Furthermore, models were evaluated on two external validations datasets to demonstrate generalizability and robustness to data variability. Ultimately, the proposed architecture is an automated multitask method that expands on previous methods by successfully both detecting and segmenting nodules in ultrasound.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award number R21EB030691.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of University of California, Los Angeles gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Manuscript received March 2023. This work was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award number R21EB030691.
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
Introduction updated to clarify main contributions of paper. Some sections were restructured for further clarity. Paper was reformatted overall for a new journal submission.
Data Availability
The datasets presented in this manuscript are not readily available due to protection of patient privacy.