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Abstract— An increase in the incidence and diagnosis of
thyroid nodules and thyroid cancer underscores the need
for a better approach to nodule detection and risk stratifi-
cation in ultrasound (US) images that can reduce health-
care costs, patient discomfort, and unnecessary invasive
procedures. However, variability in ultrasound technique
and interpretation makes the diagnostic process partially
subjective. Therefore, an automated approach that detects
and segments nodules could improve performance on
downstream tasks, such as risk stratification.Current deep
learning architectures for segmentation are typically semi-
automated because they are evaluated solely on images
known to have nodules and do not assess ability to iden-
tify suspicious images. However, the proposed multitask
approach both detects suspicious images and segments
potential nodules; this allows for a clinically translatable
model that aptly parallels the workflow for thyroid nod-
ule assessment. The multitask approach is centered on
an anomaly detection (AD) module that can be integrated
with any U-Net architecture variant to improve image-level
nodule detection. Ultrasound studies were acquired from
280 patients at UCLA Health, totaling 9,888 images, and
annotated by collaborating radiologists. Of the evaluated
models, a multi-scale UNet (MSUNet) with AD achieved the
highest F1 score of 0.829 and image-wide Dice similarity
coefficient of 0.782 on our hold-out test set. Furthermore,
models were evaluated on two external validations datasets
to demonstrate generalizability and robustness to data
variability. Ultimately, the proposed architecture is an auto-
mated multitask method that expands on previous methods
by successfully both detecting and segmenting nodules in
ultrasound.
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I. INTRODUCTION

There has been a recent rise in thyroid cancer incidence,
making it the fifth most common malignancy amongst women
in the United States between 2015-2019. [1] By age 50,
50–60% of the population have one or more thyroid nodules
incidentally discovered on imaging performed for an unrelated
indication. [2] Although 90% of these detected nodules
are actually clinically insignificant and benign, uncertainty in
radiologic evaluation can lead to unnecessary biopsies. [3]
Ultrasound (US) imaging is the primary imaging modality
used to assess the thyroid along with the morphology and in-
ternal architecture of any present nodules. [4] When evaluating
nodules, the first step involves detecting if and where a nodule
is present on a series of US images. However, the presence
of various technical limitations and artifacts in US images
such as vague nodule boundaries, poor contrast, variable probe
positioning, and non-standardized spatial resolution, makes the
diagnostic process partially subjective. These limitations lead
to high inter-radiologist variability [5] in risk stratification, and
an increased need for invasive diagnostic procedures such as
fine needle aspiration biopsies (FNABs). [6] And oftentimes,
FNABs can be inconclusive, leading to unnecessary healthcare
costs and complications for patients. [7]

In recent years, an increase in the development of computer-
aided diagnosis (CAD) methods using deep learning has
proven useful for image analysis tasks in biomedicine. [8]–
[10] Deep learning can be especially useful in eliminating vari-
ability and enhancing diagnostic reliability in thyroid cancer
risk assessment by improving nodule localization techniques.
[11] Multiple groups have explored different deep learning
architectures to address localization through the segmentation
of thyroid nodules. [12]–[15] While these existing models
demonstrate promising results, they are semi-automated be-
cause they are evaluated solely on images known to have
nodules and do not assess ability to identify suspicious im-
ages. Thus, most current work tackles a more narrow task,
which despite performing well, does not translate in terms
of clinical applicability. For such a segmentation model to be
implemented successfully, it would require a radiologist to first
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identify suspicious images, on which the model would make
nodule segmentation predictions. However, in the clinical
setting, when a radiologist evaluates a set of US images
and identifies an image with a potential nodule, they are
simultaneously deciding where the nodule is located. Without
incorporating a method for image-wide detection, a model that
purely segments is unlikely to have a tangible clinical impact.

As a standalone algorithm, image-wide detection of thyroid
nodules on ultrasound has not been extensively studied. More-
over, such an algorithm would require a secondary purpose
such as nodule localization to augment the clinical workflow.
[16] In order to improve detection of anomalous images and
elevate the clinical utility of a segmentation model, this work
introduces a multitask approach through an anomaly detection
(AD) module to be used in conjunction with any U-Net
architecture variant. Previously, Jain et al. [17] proposed a two-
stage model that performed AD to filter out non-suspicious
capsule endoscopy images and then segmented the remaining
images. In a different study, Chen et al. [18] integrated a
mask classification component into their dermoscopic image
segmentation network to determine if a lesion was present.
In that work, the mask classification output was only used
to improve the training of model weights. The proposed AD
module expands on this by not only making a binary clas-
sification of nodule presence, but multiplying the AD output
with the nodule segmentation to post-process the prediction.
By concurrently determining which images may have nodules
and segmenting suspicious regions, our multitask approach
allows for a clinically translatable model that aptly parallels
the workflow for thyroid nodule assessment.

The AD module is integrated with a variety of state-of-
the-art segmentation architectures to understand its impact
on performance. A majority of past work has studied the
UNet architecture, a gold standard for segmentation tasks.
[8] However, the UNet implements the same convolutional
filter size, resulting in a fixed receptive field which hampers
the segmentation of objects that vary in size. In response to
this issue, Su et al. proposed the multi-scale UNet (MSUNet)
[19], which introduces a multi-scale block in each layer of
the encoder to fuse the outputs of convolution kernels with
different receptive fields. The multi-scale block helps capture
more diverse features and detailed spatial information from the
input. This innovation is especially relevant for thyroid nodule
segmentation since the target presents in diverse shapes and
sizes. MSUNet was shown to demonstrate consistent perfor-
mance when evaluated on various medical image segmentation
datasets, one of which was a collection of breast ultrasound
lesion images. However, the architecture was not specifically
evaluated on ultrasound images for thyroid nodule segmen-
tation. This paper extends the application of MSUNet and
introduces the AD module to create a more clinically impactful
segmentation method. In summary, the main contributions of
this work are as follows:

1) To more closely parallel the distribution of images seen
in medical practice and gather a more clinically relevant
metric, segmentation performance is measured on im-
ages with and without nodules. In contrast to previous
research, negative images (those without nodules) are

included during evaluation.
2) The AD module is integrated with the segmentation

model architecture to assist in image-wide nodule detec-
tion. Thus, the proposed multitask method steps towards
an automated segmentation method that does not rely on
guidance from radiologists.

3) MSUNet, with and without the AD module, is com-
pared against various state-of-the-art models for nodule
segmentation.

4) The evaluated architectures are trained and tested on a
novel thyroid ultrasound dataset. Furthermore, they are
externally validated on two publicly available thyroid
ultrasound datasets, demonstrating model stability and
robustness to data variability.

II. METHODS
A. Dataset Descriptions

1) UCLA Dataset: UCLA Health has implemented a stan-
dardized protocol for the acquisition of thyroid US images.
Over the past three years, patients who have had an US
examination following this protocol have had their imaging
collected and aggregated in the UCLA Thyroid RadPath
research dataset. This study consists of 280 patients from this
dataset, where each patient has a set of 20-40 US images
that span a variety of anatomic regions and ultrasound probe
orientations. Each US image has been manually segmented by
two radiologists and validated by a more senior radiologist at
UCLA.

2) Digital Database Thyroid Image (DDTI): DDTI is a public,
open access dataset from the IDIME Ultrasound Department,
one of Colombia’s largest diagnostic imaging centers. [20]
This dataset contains 480 images from 290 patients. Each of
these images is accompanied by a nodule annotation made by
a radiology resident. Preprocessing of the original 480 images
resulted in 610 images (images that contained two frames in
one were split and considered separately).

3) Stanford CINE: The Stanford CINE dataset contains
192 cine clips from 167 patients with biopsy-confirmed thy-
roid nodules. [21] The cine clips in this dataset included
radiologist-annotated segmentations and captured a single nod-
ule. On average, each cine clip was composed of 90 frames,
but the total number of frames was downsampled by a factor of
10 due to redundancy in image content. The frames from the
cine clips were extracted and treated as independent images.

B. AD Module
The central innovation of this approach is the integration of

the AD module with any variant of the U-Net architecture,
such as MSUNet, to enable a multitask model for thyroid
nodule segmentation on ultrasound images (Fig. 2). The con-
tracting path of a U-Net based architecture is engineered to
extract a high-level representation of an input image. The
AD module flattens this feature map and passes it through
a four-layer fully connected network (FCN) that performs a
binary classification of nodule presence. The FCN includes
Dropout layers, to prevent overfitting and LeakyReLU activa-
tion, to maintain a non-zero gradient during training. Then,
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Fig. 1. Example of an image with corresponding annotation mask from
each dataset.

the FCN output is rescaled between 0 and 1 using a sigmoid
function. The AD module leverages the feature rich image
encoding, without requiring unnecessary feature engineering
or processing steps, to make a streamlined classification of
nodule presence with minimal overhead. The expansive path
of the U-Net architecture also takes the image encoding from
the contracting path, but reconstructs a predicted segmentation
mask. Thus, for every input image, MSUNet with the AD
module (MSUNet-AD) will predict a nodule mask and AD
output. During evaluation, an empirically determined threshold
(details under Sensitivity Analysis in Results) is used to
binarize the AD output, which corresponds to MSUNet-AD’s
prediction of whether or not the input image contains a nodule.
The AD output is then multiplied with the binary mask to
either maintain the segmentation prediction or convert it into
an empty mask.

C. MSUNet

The UNet has been a standard architecture used for medical
image segmentation. The encoding pathway consists of mul-
tiple layers, each of which contain a sequence (block) of 3x3
convolutions that extract relevant image features. However,
using the same 3x3 kernel size for encoding pathway convolu-
tions will lead to a fixed receptive field size, which can cause
shortcomings in feature extraction during the encoding path-
way and feature recovery during the decoding pathway. Small
receptive fields typically excel at segmenting small objects,
but struggle at localization, whereas large receptive fields are
more conducive to segmenting and localizing larger objects.
[22] In response to this tradeoff, Su et al. introduced MSUNet
and the idea of the multi-scale block, which incorporates
convolution sequences with different kernel sizes, allowing for
the extraction of more diverse features. The multi-scale block
consists of parallel paths each applying a double convolution,
one with kernel size 3x3 and one with kernel size 7x7. The
outputs of these layers are concatenated, a 1x1 convolution is
applied and the resulting matrix is fed into the next layer.

D. Segmentation Architectures

1) Semantic Guided UNet (SGUNet): SGUNet [14] is a
UNet inspired architecture designed specifically for thyroid
nodule segmentation in ultrasound. Their primary innovation
is the SGM module, which reduces noise interference inherent
to ultrasound imaging that may be propagated in the encoding
layer convolutions as well as in the skip connections to
the decoder layers. A SGM module is included after each
decoding layer to convert the upsampled decoding into a one
channel feature map. This one channel map is then concate-
nated with the previous decoding layer’s SGM module output.
A 1x1 convolution is applied to the resulting two channel
map to result in that decoding layer’s one channel semantic
map. SGUNet was re-implemented in PyTorch, trained on the
UCLA dataset and used as a baseline to compare against the
proposed architecture.

2) MICCAI 2020 TN-SCUI Challenge Winner (Wang et al.):
The Wang et al. model [23] is a two stage cascaded framework
that was developed for single-target segmentation of thyroid
nodules. The stage 1 network is trained to predict a nodule
given an ultrasound image, while the stage 2 network is trained
on an image crop containing the region of interest derived from
the ground truth annotation. Thus, during evaluation the two
stages can be used sequentially, where stage 1 makes an initial
prediction to localize the nodule, and stage 2 performs a finer
segmentation of the identified nodule. Pretrained weights for
stage 1 and stage 2 from training on the TN-SCUI challenge
dataset were used to compare against Wang et al. when trained
and evaluated on the UCLA dataset. Lastly, the proposed AD
module could not be integrated with the Wang et al. model.
Instead, a similar AD module was trained in parallel and
during evaluation, its binary output was used to post-process
the predicted mask. The AD output is multiplied with the mask
to either maintain the prediction or convert it to an empty
mask.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2023. ; https://doi.org/10.1101/2023.01.31.23285223doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.31.23285223
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

Fig. 2. An overview of the model architecture for MSUNet-AD, with an in-depth look at the operations in each multi-scale block (bottom left) and in
the AD module (bottom right).

TABLE I
PATIENT AND IMAGE COUNTS FOR TRAIN, VALIDATION AND TEST

SPLITS. IMAGES WITH AT LEAST ONE GROUND TRUTH NODULE ARE

REFERRED TO AS POSITIVE IMAGES. THE IMAGES WITHOUT NODULES

ARE NEGATIVE IMAGES. THE PERCENTAGE OF POSITIVE IMAGES ARE

INCLUDED IN THE LAST COLUMN.

Split Patients Images Positive Images

train 202 7097 2892 (40.7%)
validation 22 793 332 (41.9%)
test 56 1998 766 (38.3%)

3) Additional Baselines: The proposed architecture was
compared against standard baselines that are commonly con-
sidered in segmentation papers. These additional baselines
include the UNet, [8] UNet++ (Nested UNet), [24] UNet with
pretrained ResNet50 encoder (SResUNet) and Attention UNet
(AttUNet). [25]

E. Model Training

An 80:20 train-test split was applied at the patient level to
the UCLA dataset. 10% of the training set patients made up the
validation set. Images with certain artifacts, such as transducer
information, vascular flow assessments (Doppler images) or
caliper markings, were removed. Each of the remaining images
went through removal of protected health information, contrast
enhancement and whitening. Image counts after applying this
preprocessing pipeline are presented in Table I.

Image inputs for model training, validation, and testing were
resized to 256 x 256. Image augmentation was performed
through random flipping, rotation, and addition of Gaussian
noise. The Adam optimizer was used with an initial learning
rate of 0.0005 and batch size of 64. The learning rate was
decreased by a factor of 10 if the validation loss did not
improve for 5 epochs. The segmentation models without AD
were trained using DiceBCE loss. A value of 0.5 is empirically
assigned to w so that both the Dice loss and pixel-level BCE
loss (P-BCE) have equal weighting. Upon integration of the
AD module with the segmentation model, BCE loss was used
for the AD classification task (AD-BCE). Equation (1) shows
how these losses are used in concordance to train the multitask
model. All models were developed using PyTorch 1.11.0 and
trained on a NVIDIA DGX-1.

Ltotal = w ∗ (LP-BCE + LDice) + LAD-BCE (1)

F. Evaluation Metrics
Various evaluation metrics were used to quantify segmen-

tation performance. The image-wide metrics are are Dice
similarity coefficient (DSCall), precision, recall and F1 score.
Precision, recall, and F1 score are calculated using a slightly
different definition for true positives (non-empty prediction
that overlaps with ground truth positive), true negatives (empty
prediction for a ground truth negative), false positives (non-
empty prediction for a ground truth negative) and false neg-
atives (empty prediction for a ground truth positive or non-
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* * * * * * * *

Fig. 3. Box plot comparing segmentation performance by nodule size quartile between models with and without AD module. The plot represents
the distribution of the DSC values (used to calculate DSC+) for each quartile. A black asterisk above a comparison represents a statistically
significant difference between models with and without the AD module. The white crosshair marks the mean of the distribution.

empty prediction that does not overlap with ground truth
positive). DSCall is the average Dice similarity coefficient
(DSC) across all evaluated images. Because the Dice coeffi-
cient is undefined in cases where no nodule is present, Laplace
smoothing (λ=1e-6) is applied to allow for calculation across
all images. Thus, when DSC is calculated for a negative
image, an empty predicted mask will lead to a DSC of 1,
indicating a true negative. The positive image-level metrics
are DSC+ and Intersection over Union (IoU). These metrics
are averaged across only the positive images in the test set.
When calculating DSC, as appears in (2), true positives (TP),
false positives (FP) and false negatives (FN) are determined
using the traditional pixel-level definition.

DSC =
2 ∗ TP + λ

2 ∗ TP + FP + FN + λ
(2)

The Wilcoxon Rank Sum test was used to compare model
performance based on DSC. Since the test set was deter-
mined based on patient-level split, there could be overlap
in anatomical regions captured by a patient’s US images,
which could unintentionally inflate the statistical power of
the results. To address this shortcoming, the mean DSC for
each patient’s positive images were calculated and the test
statistic was calculated using these patient-level DSC averages
instead of DSCall or DSC+. For the Stanford CINE dataset,
since adjacent frames tended to capture related anatomical

views, DSC was averaged across the frames for each cine
clip. For DDTI, although some patients had multiple images,
they typically were of varying anatomical views so result
aggregation was unnecessary.

III. RESULTS

A. Segmentation Performance

The models were evaluated on the holdout test set with
and without the AD module integrated into their architecture.
MSUNet-AD had the highest DSCall of 0.782 and F1 of 0.829
when compared against the other models with AD. In terms
of DSC+, the models with AD performed between 0.571
and 0.627. In order to assess the effect of the AD module,
further evaluation was performed on all the models without
the AD module (Table II). When AD is integrated into the
model architecture, there are increases in DSCall and F1. For
example, for MSUNet there was an increase in F1 from 0.683
to 0.829 and in DSCall from 0.581 to 0.782. MSUNet also had
a DSC+ of 0.726, while the other networks ranged between
0.621 and 0.711. Another observed trend when AD was inte-
grated into the model architectures was a drop in DSC+ from
values between 0.621 and 0.757 to values between 0.571 and
0.627 (P<0.05). The drop in performance on DSC+ can be
attributed to variance in performance across different nodule
sizes. Nodule size was determined by calculating the number
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TABLE II
PERFORMANCE OF MODELS WITH AND WITHOUT AD ON HOLD-OUT TEST SET. BOLDED VALUES HIGHLIGHT THE MODEL WITH THE BEST

PERFORMANCE ON A CERTAIN METRIC.

Image-Wide Average Across Positive Images
Model Name DSCall Precision Recall F1 DSC+ IoU

UNet-AD 0.775±0.357 0.807 0.822 0.814 0.609±0.340 0.514±0.316
NestedUNet-AD 0.762±0.364 0.795 0.850 0.821 0.597±0.335 0.498±0.308
SResUNet-AD 0.754±0.362 0.793 0.832 0.812 0.575±0.321 0.469±0.290
Wang et al.-AD 0.755±0.385 0.755 0.768 0.761 0.609±0.379 0.533±0.355
SGUNet-AD 0.722±0.390 0.731 0.811 0.769 0.571±0.344 0.474±0.313
AttUNet-AD 0.776±0.355 0.804 0.846 0.824 0.623±0.334 0.527±0.313
MSU-Net-AD 0.782±0.354 0.812 0.847 0.829 0.627±0.343 0.537±0.323

UNet 0.544±0.445 0.512 0.946 0.665 0.711±0.276 0.610±0.277
NestedUNet 0.539±0.444 0.508 0.944 0.661 0.710±0.271 0.606±0.271
SResUNet 0.259±0.369 0.369 0.941 0.530 0.673±0.277 0.563±0.271
Wang et al. 0.299±0.402 0.377 0.961 0.541 0.757±0.248 0.660±0.258
SGUNet 0.442±0.435 0.458 0.920 0.611 0.621±0.289 0.506±0.273
AttUNet 0.547±0.444 0.515 0.945 0.667 0.707±0.277 0.606±0.279
MSU-Net 0.581±0.442 0.535 0.944 0.683 0.726±0.271 0.628±0.273

Q1 Q2 Q3 Q4
Nodule Size Quartile
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Fig. 4. Image-wide recall was calculated for each model for each of the
nodule size quartiles. The difference in recall between a model without
and with AD is plotted for each quartile.

of pixels a nodule(s) occupied on the image. The nodule sizes
for all the positive images in the test set were aggregated and
split into quartiles, where Q1 (smallest quartile) represents the
smaller nodules and Q4 (largest quartile) represents the larger
nodules. These quartiles are used to stratify the positive images
in the test set and perform a more thorough evaluation.

A closer look at performance across the quartiles, upon
addition of AD, shows that there is a larger drop in DSC on
the smallest quartile than on the largest quartile. There were
significant differences in DSC when AD was added between
the majority of models on Q1 and Q2 (Fig. 3). One such case
is the significant drop in DSC from MSUNet to MSUNet-

AD in Q1 (P=0.001) and Q2 (P=0.002). An example of this
can be seen in the 2nd row of Fig. 6, where MSUNet-AD
and AttUNet-AD are unable to segment a smaller nodule,
while their non-AD counterparts are at least able to localize
it. However, the drops in DSC from MSUNet to MSUNet-AD
were insignificant for Q3 (P=0.059) and Q4 (P=0.10). The
more consistent performance on larger nodules can be seen in
Fig. 6 (4th row), where all three models with and without AD
are able to successfully segment the more prominent nodule.
Ultimately, when AD is added to the other baseline models, the
pattern of DSC falling more on the smallest quartile compared
to the largest quartile is also observed. Moreover, there is
less variability in DSC when considering performance on the
largest quartile compared to the smallest quartile. An example
of the greater variability in the smallest quartile can be seen in
Fig. 6 (2nd row, 3rd row). In the 3rd row, MSUNet-AD is able
to successfully segment a small nodule, whereas it struggles
to segment a similarly sized nodule in the 2nd row example.
Although the addition of the AD module leads to an increase
in F1, it results in a drop in DSC that can be attributed to
poorer segmentation of smaller nodules.

1) Wang et al. Evaluation Results: The Wang et al. architec-
ture was trained on the TN-SCUI dataset and evaluation on the
TN-SCUI test set showed an increase in DSC when the stage 2
network was used with stage 1. Wang et al. made the weights
of their trained model publicly available; when evaluated on
the UCLA dataset, their model achieved a DSC+ of 0.708.
When trained and tested on the UCLA dataset, there was a
decrease in DSC+ from 0.757 to 0.635 when stage 1 and stage
2 were used in conjunction as opposed to just stage 1. Thus,
the results for the Wang et al. model (Table II) are from the
best performing permutation of the model architecture, which
is when only stage 1 was used. Of the models without AD, the
Wang et al. model had one of the lowest F1 scores of 0.541
and DSCall of 0.299, but the highest DSC+ of 0.757. When
AD was incorporated, the Wang et al. model had a DSCall of
0.755, but the lowest F1 score of 0.761 and a drop in DSC+

to 0.609.
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TABLE III
PERFORMANCE OF MODELS ON DDTI AND STANFORD CINE DATASETS. BOLDED VALUES HIGHLIGHT THE MODEL WITH THE BEST PERFORMANCE

ON A CERTAIN METRIC.

DDTI Stanford CINE
Average Across Positive Images Average Across Positive Images

Model Name DSC+ IoU DSC+ IoU

UNet-AD 0.494±0.242 0.364±0.223 0.456±0.264 0.335±0.236
NestedUNet-AD 0.502±0.247 0.372±0.227 0.476±0.275 0.356±0.244
SResUNet-AD 0.576±0.224 0.438±0.212 0.535±0.251 0.404±0.230
SGUNet-AD 0.513±0.257 0.384±0.232 0.530±0.271 0.405±0.248
AttUNet-AD 0.504±0.234 0.370±0.215 0.462±0.264 0.339±0.232
MSU-Net-AD 0.527±0.325 0.421±0.290 0.569±0.322 0.463±0.294

UNet 0.639±0.203 0.501±0.211 0.616±0.245 0.488±0.242
NestedUNet 0.614±0.195 0.470±0.195 0.609±0.258 0.483±0.249
SResUNet 0.604±0.214 0.466±0.215 0.601±0.251 0.472±0.242
Wang et al. 0.728±0.241 0.617±0.243 0.701±0.303 0.609±0.299
SGUNet 0.587±0.202 0.443±0.197 0.563±0.253 0.433±0.234
AttUNet 0.649±0.191 0.509±0.204 0.612±0.244 0.483±0.240
MSU-Net 0.705±0.191 0.575±0.210 0.658±0.269 0.542±0.267
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Fig. 5. F1 performance across AD thresholds for the six models
with AD. Dot marker represents the optimal threshold, where the best
validation set F1 score is achieved for a given model.

B. Sensitivity Analysis
A sensitivity analysis was conducted to determine the best

threshold for binarizing AD output. Various thresholds be-
tween 0 and 0.75 in increments of 0.05 were tested. Each
network with AD was evaluated on the validation set and
image-wide F1 scores were recorded using each of these
different thresholds (Fig. 5). All the models with the AD
module had an optimal AD threshold of either 0.2, 0.3, or
0.4, where they demonstrated best F1 performance on the
validation set. There is a consistent plateau in F1 scores up
until 0.5 for all models except SGUNet-AD, indicating that
performance would not differ too drastically for most AD
thresholds in that range.

C. External Validation
The models with and without the AD module were evaluated

on two external validation (EV) datasets, DDTI and Stanford
CINE dataset. One difference between the UCLA dataset and
these two datasets is that the latter does not have any negative

images. Since the EV datasets only contain positive images,
AD does not necessarily need to be performed. By setting the
threshold at which the AD module output is binarized to 0, all
images will be suspected to have a nodule(s) and it becomes
possible to assess the segmentation ability of the models with
AD. Unlike in the other models, the AD component for the
Wang et al. architecture was trained independently. Thus when
the threshold is 0, it eliminates the effect of the AD module.
Hence, the EV results for the Wang et al. model with and
without AD are equivalent.

The segmentation models without AD had a higher DSC+

compared to those with AD. For example, MSUNet had a
DSC+ of 0.705 and 0.658, on DDTI and Stanford CINE
respectively, whereas MSUNet-AD had a DSC+ of 0.527 and
0.569. For DDTI, the other models without AD had DSC+’s
ranging between 0.587 and 0.728, while those with AD ranged
between 0.494 and 0.576. For Stanford CINE, the other models
without AD had DSC+’s ranging between 0.563 and 0.701,
while those with AD ranged between 0.456 and 0.569 (Table
III). DSC+ for MSUNet on DDTI was higher than that for
AttUNet (P<0.001) and UNet (P<0.001). This was also the
case for DSC+ for MSUNet on Stanford CINE compared to
AttUNet (P=0.002) and UNet (P=0.006). DSC+ for MSUNet
on the UCLA dataset was 0.726, which was higher than
DSC+ of 0.705 (P=0.67) on DDTI and 0.658 on Stanford
CINE (P<0.001). On the UCLA dataset, MSUNet-AD had a
DSC+ of 0.627 which was higher than the DSC+ of 0.527
on DDTI (P=0.20) and 0.569 on Stanford CINE (P=0.016).

IV. DISCUSSION AND CONCLUSIONS

The AD module improved F1 score and DSCall across
the board when integrated with the segmentation models,
with MSUNet-AD performing best in these two metrics. This
increase can be attributed to the decrease in false positives
at the image-wide level. Prior to the addition of AD, the
Wang et al. model performed the best in terms of DSC+;
however, the low DSCall and precision, also seen in the
other architectures without AD, demonstrated that the model’s
predictions contained several false positives. Although AD
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Fig. 6. Examples of the difference in segmentation performance between three of the models evaluated. First row: All models without the AD
module conflate a jugular vein as a nodule leading to a false positive. When the AD module is added, none of the models contain a prediction since
the AD output correctly eliminates any predicted segmentations. Second row: An example of all models except MSUNet struggling to segment a
small nodule. Third row: An example of a nodule where only MSUNet and MSUNet-AD exhibit agreement, whereas SGUNet-AD and AttUNet-AD
struggle in comparison to their non-AD counterparts. Fourth row: An example of all models successfully segmenting the larger of two nodules.
MSUNet-AD, AttUNet and AttUNet-AD are the only ones capable of detecting the smaller, adjacent nodule, but they struggle to completely segment
it. Fifth row: A relatively difficult example with three different small nodules. All six models consistently miss the far right nodule. Here, AttUNet-AD
and MSUNet-AD perform at par with the models without AD.

helped increase precision, there was also an increase in false
negatives, hence the decrease in recall and DSC+ for the
models with AD. Further investigation into this pattern of
decreasing DSC+ revealed that this drop was mainly due
to an inability to segment smaller nodules (Fig. 3). This
was seen across most models, as exemplified in both the
quantitative disparities between Q1 and the other quartiles, and
the segmentation examples (2nd row, Fig. 6). Moreover, the

false negatives occurred with greater frequency in the smaller
quartiles, as evidenced by the greater delta in image-wide
recall between a model without and with AD in Q1 compared
to in Q4 (Fig. 4). However, smaller nodules are less likely
to be clinically significant [26], thus reducing the clinical
consequences of the increase in false negatives due to AD.
One limitation in these experiments was that the formula used
to calculate size was pixel-based and not necessarily geared
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towards capturing the clinical definition of nodule size.
In regards to the EV experiments, there were notable

advantages and disadvantages to the datasets used. DDTI was
a favorable dataset because it contained multi-nodule images,
which is comparable to real-world data and it followed an
image collection protocol different from UCLA’s protocol,
demonstrating the model’s independence from a specific image
collection method. The main drawback of the Stanford CINE
dataset was that it only contained clips of single nodules,
which does not reflect real-world frequency. As detailed in
the results, MSUNet-AD also outperformed the majority of
other baselines on the EV datasets. It displayed similar DSC+

performance on the DDTI dataset, and despite falling short on
the Stanford CINE dataset, the results indicated there was no
severe overfitting to patterns found within images collected
using UCLA’s standard US imaging protocol. Although the
clinical implications of such models with AD need to be
evaluated to understand how they would augment practice,
these results indicate that MSUNet-AD is a versatile model
that could have clinical applicability.

Through a multitask approach, MSUNet-AD advances cur-
rent thyroid nodule segmentation methods with an automated
technique that is designed to parallel clinical practice, and in
doing so augment a radiologist’s workflow. The experimental
results demonstrate that a previously developed architecture,
MSUNet, upon the addition of AD, performs best in terms
of image-wide detection and pixel-level nodule segmentation.
Furthermore, the architectures with AD were evaluated on
two external validation sets, DDTI and Stanford CINE, to
demonstrate model stability and robustness to data variability.
This technique can be extended to have further clinical appli-
cation by extracting nodule features from segmented regions
to develop a network that can perform an improved TI-RADS
evaluation or automated biopsy prediction. Future work will
aim to integrate the proposed multitask model into an end-
to-end network that is also capable of nodule malignancy
classification and further risk stratification. With rigorous
evaluation, it would be possible to reduce the subjectivity in
radiological evaluation and perceive certain clinical impacts
such as an improvement in triaging the need for biopsy.
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