Abstract
Background Mismatch negativity (MMN) reductions are among the most reliable biomarkers for schizophrenia and have been associated with increased risk for conversion to psychosis in individuals at clinical high risk for psychosis (CHR-P). Here, we adopt a computational approach to develop a mechanistic model of MMN reductions in CHR-P individuals and patients early in the course of schizophrenia (ESZ).
Methods Electroencephalography (EEG) was recorded in 38 CHR-P individuals (15 converters), 19 ESZ patients (≤5 years), and 44 healthy controls (HC) during three different auditory oddball MMN paradigms including 10% duration-, frequency-, or double-deviants, respectively. We modelled sensory learning with the hierarchical Gaussian filter and extracted precision-weighted prediction error trajectories from the model to assess how the expression of hierarchical prediction errors modulated EEG amplitudes over sensor space and time.
Results Both low-level sensory and high-level volatility precision-weighted prediction errors were altered in CHR-P and ESZ groups compared to HC. Furthermore, low-level precision-weighted prediction errors were significantly different in CHR-P that later converted to psychosis compared to non-converters.
Conclusions Our results implicate altered processing of hierarchical prediction errors as a computational mechanism in early psychosis consistent with predictive coding accounts of psychosis. This computational model appears to capture pathophysiological mechanisms relevant to early psychosis and the risk for future psychosis in CHR-P individuals, and may serve as a predictive biomarker and mechanistic target for novel treatment development.
Competing Interest Statement
Dr. Mathalon is a consultant for Gilgamesh Pharmaceuticals, Neurocrine Biosciences, and Recognify Life Sciences. All other authors reported no biomedical financial interests or potential conflicts of interest.
Funding Statement
This work was supported by the National Institutes of Health (R01 MH076989 to DHM), the Swiss National Science Foundation (Doc.Mobility, 200054 to DJH; Ambizione, PZ00P3_167952 to AOD), the Brain and Behavior Research Foundation (to DHM), the Krembil Foundation (to AOD), and the U.S. Department of Veterans Affairs (Veterans Affairs Senior Research Career Award, 1IK6CX002519 to JMF).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The ethics committee of the Institutional Review Board of Yale University gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data sharing is not applicable to this article as no new data were created or analyzed in this study.