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Abstract 

Background 

Mismatch negativity (MMN) reductions are among the most reliable biomarkers for 

schizophrenia and have been associated with increased risk for conversion to psychosis in 

individuals at clinical high risk for psychosis (CHR-P). Here, we adopt a computational 

approach to develop a mechanistic model of MMN reductions in CHR-P individuals and 

patients early in the course of schizophrenia (ESZ). 

 

Methods 

Electroencephalography (EEG) was recorded in 38 CHR-P individuals (15 converters), 19 ESZ 

patients (≤5 years), and 44 healthy controls (HC) during three different auditory oddball 

MMN paradigms including 10% duration-, frequency-, or double-deviants, respectively. We 

modelled sensory learning with the hierarchical Gaussian filter and extracted precision-

weighted prediction error trajectories from the model to assess how the expression of 

hierarchical prediction errors modulated EEG amplitudes over sensor space and time. 

 

Results 

Both low-level sensory and high-level volatility precision-weighted prediction errors were 

altered in CHR-P and ESZ groups compared to HC. Furthermore, low-level precision-

weighted prediction errors were significantly different in CHR-P that later converted to 

psychosis compared to non-converters. 
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Conclusions 

Our results implicate altered processing of hierarchical prediction errors as a computational 

mechanism in early psychosis consistent with predictive coding accounts of psychosis. This 

computational model appears to capture pathophysiological mechanisms relevant to early 

psychosis and the risk for future psychosis in CHR-P individuals, and may serve as a 

predictive biomarker and mechanistic target for novel treatment development. 

 

Keywords: mismatch negativity, prediction errors, EEG, schizophrenia, clinical high risk for 

psychosis, hierarchical Gaussian Filter, sensory learning 
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Introduction 

Often without our awareness, our brain continuously learns about the environment that 

surrounds us. The mismatch negativity (MMN) is a neurophysiological index of such implicit 

learning commonly measured with electroencephalography (EEG). It refers to a brain 

response that is elicited automatically when an auditory stimulus violates a statistical 

regularity in the recent auditory environment,1 for example when a series of low tones is 

unexpectedly interrupted by a high tone (Figure 1A). Formally, the MMN is a transient 

negative wave deflection in the event-related potential (ERP) elicited by infrequent auditory 

deviant stimuli randomly interspersed among frequent standard stimuli that is most easily 

identified between 100-250ms following stimulus onset in the deviant-standard ERP 

difference wave (Figure 1B). 2,3 Importantly, this neurophysiological assessment is very 

feasible in a wide range of clinical settings. 

MMN amplitude reductions have been replicated in numerous studies of patients 

with schizophrenia.4 A number of pharmacological challenge studies investigating the 

neuroreceptor basis of the MMN showed N-methyl-D-aspartate receptor (NMDAR) 

antagonists (e.g., phencyclidine or ketamine) to reduce MMN amplitude in rodents,5 

monkeys,6 and humans7–9 (see 10 for an overview). Together, these results implicate NMDAR 

dysfunction as a pathophysiological mechanism underlying MMN amplitude reduction and a 

wide range of clinical symptoms and cognitive impairments in schizophrenia.11–17 

Interest in MMN amplitude reductions has increased in recent years as a possible 

early warning sign for impending psychosis. MMN reductions are already present in 

individuals at clinical high-risk for psychosis (CHR-P), likely reflecting vulnerability for a 

progression to full psychosis as MMN amplitude reductions were found to be more 
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pronounced in CHR-P individuals who later converted to a psychotic disorder.18–22 Despite 

its clinical potential, the mechanisms that account for these MMN alterations in the CHR-P 

population remain poorly understood. 

One of the biggest challenges in early detection and intervention research lies in 

development of novel medications to delay or even prevent the transition to psychosis in 

CHR-P individuals.23 This challenge has been attributed to a lack of mechanistic models of 

pathophysiological processes, especially in the CHR-P population.23 In a previously published 

study, we found MMN amplitudes in ESZ patients and CHR-P individuals to be reduced,21 

and further showed MMN deficits to be greater in those CHR-P individuals who 

subsequently converted to psychosis, relative to non-converters followed-up for at least 12 

months.  Here, we apply a computational approach24 to the EEG data from this prior study 

to develop a mechanistic model of altered information processing as a basis for MMN 

amplitude reductions in CHR-P individuals and ESZ patients. 

 

 

 

 

 

 

Figure 1. Mismatch negativity. A Example stimulus sequence to elicit auditory mismatch negativity. Violation of 
statistical regularity (established through repetition of low tones) elicits mismatch negativity. B Mismatch 
negativity is typically identified in the ERP difference wave obtained by subtracting response to the frequent and 
therefore more predictable tone (standard) from the response to the infrequent unpredictable tone (deviant). 
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Methods and Materials 

Participants 

Participants included 19 early-illness schizophrenia patients (ESZ; ≤5 years since initial 

hospitalization or initiation of antipsychotic medication), 38 CHR-P, and 44 healthy controls 

(HC).21 Clinical outcomes for the 38 CHR-P participants were tracked over 24 months, 

resulting in 15 CHR-P who converted to full psychosis and 16 CHR-P who did not convert but 

were followed for at least 12 months. Seven CHR-P dropped out before the 12-month 

follow-up and were, therefore, excluded from analyses comparing CHR-P converters and 

non-converters, since their clinical outcomes were less certain. ESZ participants were 

referred from the Yale Specialized Treatment Early in Psychosis (STEP) Clinic or from 

community clinicians. CHR-P were recruited from the Yale Psychosis Prodrome Research 

(PRIME) Clinic and HC through advertisements and word-of-mouth. The study was approved 

by the Institutional Review Board of Yale University and all adult participants provided 

written informed consent. For minors, parents provided written informed consent and 

minors provided written assent. 

 

Inclusion and exclusion criteria  

ESZ patients met DSM-IV criteria for schizophrenia based on a Structured Clinical Interview 

for DSM-IV25 administered by a trained research assistant.  CHR-P participants met the 

Criteria of Psychosis-Risk Syndromes based on the Structured Interview for Psychosis-Risk 

Syndromes (SIPS).26,27  Potential participants for all groups were excluded from the study if 

they fulfilled the following criteria: substance dependence or abuse within the past year, a 

history of significant medical or neurological illness or a head injury resulting in loss of 
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consciousness, and abnormal audiometric testing. Additionally, HC who met criteria for any 

past or current DSM-IV Axis I disorder or had a first-degree relative with a psychotic disorder 

were excluded. 

 

Task 

Participants performed an unrelated primary task (silently reading a book) while presented 

with three different auditory oddball paradigms presented in fixed order. Each paradigm 

comprised two runs of 875 tones each (1750 tones in total), including 90% standard tones 

(50ms, 633 Hz) and either 10% duration (100ms), 10% frequency (1000 Hz), or 10% duration 

+ frequency double deviants (100ms and 1000 Hz). All tones were presented at 78 dB in 

fixed pseudorandomised order with 5ms rise/fall times and 510ms stimulus onset 

asynchrony through Etymotic ER3-A insert earphones (Etymotic Research, Inc., Elk Grove 

Village, Illinois).  

 

EEG data processing 

EEG was recorded using a 20-channel electrode cap with a standard 10-20 montage 

(Physiometrix, Inc., North Billerica, Massachusetts) and additional mastoid and nose 

electrodes with linked-ear reference and an FPz ground. Signals were digitised at 1000 Hz 

with a Neuroscan Synamps amplifier (Neuroscan, Herndon, Virginia). Electro-oculograms 

were recorded from electrodes located above and below the left eye and at the outer canthi 

of both eyes. 

EEG preprocessing consisted of high-pass filtering with a Butterworth filter (0.5 Hz), 

downsampling (256 Hz), low-pass filtering using a Butterworth filter (30 Hz), followed by 
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epoching into 500ms segments around tone onsets (-100 to 400ms), baseline correction (-

100 to 0ms), and eyeblink correction using principal component analysis with one 

component. Eyeblink components of all participants were manually inspected and eyeblink 

detection thresholds adjusted, if necessary, followed by rejection of remaining artefactual 

trials (using a ±100 μV amplitude threshold). Preprocessing and statistical analyses were 

implemented in MATLAB (version: 2020b; https://mathworks.com) using the SPM12 toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 

 

Computational Modelling 

We modelled implicit sensory learning about the tone sequences using a 3-level binary 

Hierarchical Gaussian Filter (HGF).28,29 This model assumes that participants make inferences 

about a number of hidden environmental states (Figure 2, left). In the context of the oddball 

paradigm, based on each trial input (standard or deviant tones), a participant needs to infer 

three hidden states, structured as follows: The lowest level state corresponds to the tone 

probability. On each trial 𝑘 a tone can either be deviant (𝑥1
(𝑘)
= 1) or a standard tone 

(𝑥1
(𝑘)
= 0). This state can be described by a Bernoulli distribution that is linked to the state 

at the second level x2
(k) through the unit sigmoid transformation: 

    p(x1
(𝑘)
|x2
(𝑘)
) = s(x2

(𝑘)
)
x1
(𝑘)

(1 − s(x2
(𝑘)
))
1−x1

(𝑘)

∼ Bernoulli (x1
(𝑘)
; s (x2

(k)
)), (1) 

with 

 s(z) =
1

1 + 𝑒−𝑧
. (2) 

𝑥2
(𝑘)

 represents the unbounded tendency towards standard or deviant tones (−∞,+∞) or 

the tone tendency and is specified by a normal distribution: 
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 p(x2
(k)
|x2
(k−1)

, x3
(k)
, κ2, ω2) ∼ 𝒩 (x2

(k)
; x2
(k−1)

, exp(κ2x3
(k)
+ω2)). (3) 

 

. 

The state at the third level x3
(k) expresses the (log) volatility of the environment over time 

and is also modelled using a normal distribution: 

 p(xx
(k)|x3

(k−1), θ) ∼ 𝒩(x3
(k); x3

(k−1), 𝜔3). (4) 

Participants' beliefs about these hidden states at level 𝑖 of the hierarchy and on trial 𝑘 are 

denoted with μi
(k) and updated after each new tone according to the following update 

equation: 

 
Δμi
(k)

⏟  
belief update

∝
π̂−1
(k)

πi
(k)

⏞
precision-weight

δi−1
(k)
⏟

prediction error

, 
(5) 

where μi
(k) is the expectation or belief at trial 𝑘 and level 𝑖 of the hierarchy, π̂i−1

(k)  is the 

precision (inverse of the variance) from the level below (the hat symbol denotes that this 

precision has not been updated yet and is associated with the prediction before hearing a 

new tone), πi
(k)is the updated precision at the current level, and δi−1

(k)  is a prediction error 

(PE) expressing the discrepancy between the expected and the experienced outcome. 

In line with a previous study examining the effects of ketamine on sensory learning 

in a roving paradigm,24 we focused our analysis on low-level precision-weighted PEs about 

the tone tendency (ϵ2) and high-level precision-weighted PEs about the volatility of the 

environment (ϵ3), where the precision-weighted PE ϵi
(k) on each trial 𝑘 and at level 𝑖 of the 

hierarchy is defined as (cf. Eq. 5): 
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 ϵi
(k) =

π̂i−1
(k)

πi
(k)
δi−1
(k) . (6) 

We implemented this model using the ‘tapas_ehgf_binary’ function from the HGF 

toolbox (version 6.0), which is made available as open-source code as part of the TAPAS30 

software collection (version: 5.1.0; 

https://github.com/translationalneuromodeling/tapas/releases/tag/v5.1.0) in MATLAB 

(version: 2020b; https://mathworks.com). We used this recently developed enhanced 

version of the HGF to improve sensitivity to learning about environmental volatility. The 

main distinction with respect to earlier versions of the HGF is that the posterior means μi
(k) 

are updated before the precisions πi
(k) at level 𝑖 of the hierarchy. For more details on the 

update equations, see 28,29 for the original HGF and the ‘tapas_ehgf_binary’ function for the 

eHGF. 

We optimised the parameters of the perceptual model assuming that each 

participant acted as an ideal Bayesian observer minimising the surprise for a given input 

sequence using the ‘tapas_bayes_optimal_binary’ function. Ideally model parameters 

should be estimated based on both sensory input and participants’ behavioural responses to 

estimate how participants’ learning deviates from an ideal Bayesian observer. However, this 

was not possible, because the MMN paradigm is a passive task that does not require 

participants to make responses. 

The prior settings (mean, variance) for this optimisation were (-3, 4) for the evolution 

rate ω2 and (2, 4) for meta-volatility ω3. The coupling strength κ2 was fixed to log(1). 

Posterior parameter estimates are summarised in Table 1. 
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Statistical analyses 

Demographic and clinical variables were analysed in R (version: 4.04; https://www.r-

project.org/) using R-Studio (version: 1.4.1106; https://www.rstudio.com/). We report 

uncorrected p-values for either ANOVAs or χ2-tests where appropriate. Post hoc tests were 

Bonferroni-corrected (α = 0.05). 

 

First level analysis 

We extracted the trajectories of low-level precision-weighted PEs about the tone tendency 

ϵ2 and high-level precision-weighted PEs about the volatility of the environment ϵ3. Trial-by 

trial magnitude estimates of the absolute value of low-level precision-weighted PEs |ϵ2| or 

high-level precision-weighted PEs ϵ3 were included as parametric regressors to explain trial-

by-trial variation in EEG amplitude (Figure 2) as done previously.24 The absolute value of ϵ2 

was chosen because it expresses Bayesian surprise independent of the physical 

characteristics of a tone such as a specific frequency. The general linear model at the first 

level consisted of an intercept term and either (z-standardized) low or high-level precision-

weighted PE trajectories as predictors and EEG amplitude across sensors and peri-stimulus 

time as the response variable. For each precision-weighted PE, we tested the null hypothesis 

that the parameter estimate was zero at each sensor and time point using an F-test. 

Statistical analyses were restricted to 100 to 400ms post-stimulus time. 

 

Second level analysis 

First-level statistics were converted into images and smoothed using a Gaussian kernel 

(FWHM: 16 mm x 16 mm) to ensure that the assumptions of Gaussian random field theory 

were met.31,32 Smoothed images were carried to the second level to compare groups using 
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different factorial designs for each precision-weighted PE to obtain statistical parametric 

maps over 2D sensor space and peri-stimulus time (Figure 2). Each factorial design included 

group as between- and MMN oddball paradigm as within-subject factor, as well as age as a 

covariate. To ensure that the equal slope assumption for age was met, we masked out 

voxels that showed a significant group-by-age interaction. Multiple testing correction was 

implemented using Gaussian random field theory31,32 and we report p-values corrected for 

peak- (ppFWE) or cluster-level (pcFWE) family-wise error rates using a cluster defining threshold 

of p<0.00133 unless stated otherwise. 

 

 

Figure 2. Computational analysis pipeline. Trial-by trial trajectories of low- and high-level precision-weighted 
prediction errors were computed using the Hierarchical Gaussian Filter28,29  (left). In a first level analysis, 
precision-weighted prediction errors were used as parametric regressors to explain EEG amplitude variations at 
each point in sensor space and peristimulus time (PST) following the tone presentation across trials within each 
participant (middle). First level statistics were carried to the second level to obtain statistical parametric maps 
over 2D sensor space and peristimulus time (right). EEG: Electroencephalography. 
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Results 

Demographic and clinical characteristics 

Demographic and clinical characteristics are displayed in Table 2 (see also 21 for more 

information). 

 

Group differences in low-level precision-weighted prediction errors 

We observed a significant group effect on the expression of low-level precision-weighted 

PEs about the tone tendency ϵ2 peaking at 105ms over left, central channels (F=20.795, 

pcFWE<0.001) and at 109ms over frontal channels (F=15.656, ppFWE<0.001). Closer inspection 

of the first effect revealed that the difference between small and large low-level precision-

weighted PEs was reduced in central channels in ESZ compared to CHR-P (peak: 152ms, 

t=4.923, pcFWE =0.001; Figure 3) and ESZ vs HC (peak: 105ms, t=6.427, pcFWE<0.001; Figure 3). 

The second effect again suggested a reduced difference between small and large low-level 

precision-weighted PEs. However, this effect was expressed over frontal channels in ESZ vs 

HC (peak: 109ms, t=5.594, ppFWE<0.001; Figure 3). The timing of these effects coincided with 

the timing of the MMN21 suggesting that MMN reductions may reflect disturbances in 

precision-weighted PE updating processes as hypothesised previously.34,35 

 

Group differences in high-level precision-weighted prediction errors 

The expression of high-level precision-weighted PEs about the volatility of the environment 

ϵ3 also showed a significant effect of group peaking at 125ms over right, central channels 

(F=17.277, pcFWE=0.005). Pairwise comparisons revealed stronger correlations of high-level 
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precision-weighted PEs with EEG amplitudes in HC compared to ESZ over frontal channels 

(peak: 125ms, t=3.931, ppFWE=0.027) and during a later time window over posterior central 

channels (peak: 344ms, t=3.821, pcFWE=0.018; Figure 4), which was also significant when 

comparing CHR-P to ESZ (peak: 340ms, t=3.621, pcFWE=0.046; Figure 4). Furthermore, we 

found that the difference between small and large precision-weighted PEs was reduced 

during an early time window in ESZ vs CHR-P (peak: 129ms, t=5.014, pcFWE=0.008; Figure 4) 

and in ESZ vs HC (peak: 125ms, t=5.728, pcFWE=0.002; Figure 4). While the early cluster again 

coincided with the time window of the MMN21; the latter cluster rather fell into the P3a 

time window, raising the question whether the P3a may also reflect PE-related processing 

(cf. Figure 1). 

 

Group differences between converters and non-converters 

Lastly, when comparing CHR-P converters to non-converters, we found a significant group 

effect on the expression of low-level precision-weighted PEs ϵ2 peaking at 137ms over left, 

central channels (F=12.722, pcFWE=0.040; small-volume corrected for the group effect on ϵ2 

between HC and ESZ). In CHR-P individuals who later transitioned to psychosis, the 

difference between small and large low-level precision-weighted PEs was reduced (peak: 

137ms, t=3.567, pcFWE=0.022; small-volume corrected for the group effect on ϵ2 between HC 

and ESZ; Figure 3D).  
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Figure 3. Low-level precision-weighted prediction errors 𝜖2. A-D: Displayed are maximum intensity projections 
highlighting significant voxels of t-contrasts testing for pairwise group differences in the expression of low-level 
precision-weighted prediction errors 𝜖2 about the tone tendency. Times displayed on y-axis indicate earliest and 
latest significant voxel. p-values were corrected for peak- (ppFWE; black dashed-line) or cluster-level (pcFWE) family-
wise error rates (FWE) using a cluster defining threshold of p<0.001 (highlighted by coloured area). Note, that 
p-values in D are small-volume corrected for the group effect on 𝜖2 between HC and ESZ (i.e., significant voxels 
in plots A OR B; black colour illustrates masked out voxels in D). For illustration, difference waveforms (10% 
highest - 10% lowest 𝜖2 trials) are shown across groups for a channel close to the peak effect. HC: Healthy 
controls. CHR-P: Individuals at clinical high risk for psychosis. CHR-C: Converters. CHR-NC: Non-converters. ESZ: 
Early-illness schizophrenia patients (≤5 years since initial hospitalization or initiation of antipsychotic 
medication). PST: Peristimulus time following tone presentation. Note that the statistical analysis window was 
restricted to 100-400ms following each tone (standard and deviants). 
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Discussion 

The objective of this study was to develop and test a mechanistic model of altered 

information processing as a basis for MMN amplitude reductions in CHR-P individuals and 

ESZ patients. We obtained three major findings: First, we observed altered expression of 

low-level precision-weighted PEs about the tone tendency between HC and ESZ and in CHR-

P compared to ESZ. Second, we also identified changes in the expression of high-level 

precision-weighted PEs about the volatility of the environment in ESZ compared to both HC 

and CHR-P during an early time window (at about 100-175ms peristimulus time), as well as 

during a later time window (at about 320-380ms). Third, the expression of low-level 

precision-weighted PEs was significantly altered in those CHR-P that later converted to a 

psychotic disorder compared to non-converters suggesting that this computational model 

appears to capture relevant pathophysiological mechanisms and may constitute a useful 

tool to predict transition to psychosis in CHR-P individuals. 

 

Theoretical implications for the predictive coding account of psychosis 

Our results are in line with the predictive coding account of psychosis that postulates that 

disturbances in hierarchical PE processing may contribute to psychotic symptoms.14,36 Our 

finding of alterations in the expression of precision-weighted PEs in central channels in 

patients with schizophrenia may suggest that patients experience aberrantly salient PEs37 in 

response to familiar stimuli (standard tones). Furthermore, changed expression of 

hierarchical PEs in frontal channels could signal a decrease in the precision of priors in 

frontal regions, as proposed in the predictive coding account of psychosis.14  
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Possible cortical generators of aberrant prediction errors 

The network of cortical regions thought to be involved in generating the MMN response 

includes bilateral primary auditory cortices (A1), superior temporal gyri (STG) and inferior 

frontal gyri (IFG).34,38–40 It is possible that the different spatiotemporal clusters that were 

identified in our study may be caused by different cortical generators, for example the 

correlation between precision-weighted PEs and EEG amplitudes in ESZ expressed in central 

channels may originate in A1 or STG, while the second cluster, which was identified over 

frontal regions, possibly suggests involvement of IFG. However, due to volume-conduction 

effects, we will have to formally test this hypothesis using source modelling in the future. 

Adams and colleagues41 recently investigated the neural mechanisms of 

schizophrenia using dynamic causal modelling. They found remarkably consistent findings 

across a wide range of paradigms implicating reductions in a model parameter that serves 

to amplify the magnitude of activity or synaptic gain of pyramidal cells. Notably, this study 

also included an MMN paradigm, in which the authors identified reduction of pyramidal 

gain in IFG specifically. This finding suggests that the expression of hierarchical PEs over 

frontal channels may be altered due to a reduction of the precision-weight rather than 

changes in the PE component of the precision-weighted PEs. 

 

Are aberrant precision-weighted prediction errors related to alterations in 

neurotransmission? 

The dysconnectivity hypothesis13,16,42–44 postulates that NMDAR-mediated modulation of 

synaptic gain is altered in schizophrenia. In line with this account, Weber et al.24 found that 

ketamine administration led to a reduced expression of high-level precision-weighted PEs 
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about the volatility of the environment in central channels, similar to our results. However, 

their results suggest that low-level precision-weighted PEs are unaffected by ketamine.  

Several neurotransmitters interact with NMDAR to dynamically control synaptic gain 

and neuroplasticity. Altered expression of precision-weighted PEs in ESZ, as identified in our 

study over early auditory regions, could reflect changes in cholinergic neurotransmission. 

Two recent studies implicate acetylcholine in regulating synaptic gain or — according to the 

predictive coding account and the dysconnectivity hypothesis — regulating sensory 

precision in early auditory regions.35,45 The first study employed a Kalman filter (i.e., a 2-

level HGF) to model changes in participants that were administered galantamine, which 

enhances cholinergic neurotransmission .35 The authors argued that galantamine may 

increase the precision of sensory PEs. The second study by Schöbi and colleagues45 modelled 

changes in between- and within-region connectivity including synaptic gain during a 

pharmacological manipulation using muscarinic receptor antagonist scopolamine or 

muscarinic receptor agonist pilocarpine in rats.45 The authors found dose-dependent 

changes in synaptic gain, but also changes in inter-regional connectivity between A1 and 

secondary auditory cortex. Moreover, changes in muscarinic receptor density among 

schizophrenia patients have been frequently reported 46–49 and Scarr et al.48 proposed that 

there may be a subgroup of schizophrenia patients specifically characterized by decreased 

cortical muscarine receptor expression. These results support a potential role of cholinergic 

neurotransmission in precision-weighted PE signalling. Beyond cholinergic processes, 

glutamatergic neurotransmission at AMPA receptors may be involved, but its precise role 

still needs to be clarified. 
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Figure 4. High-level precision-weighted prediction errors. A-D: Displayed are maximum intensity projections 
highlighting significant voxels of t-contrasts testing for pairwise group differences in the expression of high-level 
prediction errors ϵ3 about environmental volatility. Times displayed on y-axis indicate earliest and latest 
significant voxel. p-values were corrected for peak- (ppFWE; black dashed-line) or cluster-level (pcFWE) family-wise 
error rates (FWE) using a cluster defining threshold of p<0.001 (highlighted by coloured area). For illustration, 
difference waveforms (10% highest - 10% lowest 𝜖3 trials) are shown across groups for a channel close to the 
peak effect. HC: Healthy controls. CHR-P: Individuals at clinical high risk for psychosis. ESZ: Early-illness 
schizophrenia patients (≤5 years since initial hospitalization or initiation of antipsychotic medication). PST: 
Peristimulus time following tone presentation. Note that the statistical analysis window was restricted to 100-
400ms following each tone (standard and deviants). 
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Clinical Implications 

Interestingly, our results suggest that the expression of low-level precision-weighted PEs is 

blunted in CHR-P that later converted to a psychotic disorder compared to CHR-P that did 

not convert. This finding highlights potential applications of this computational approach to 

prediction of psychosis in CHR-P individuals. Furthermore, if the neurotransmitter systems 

that are involved in computing precision-weighted PEs during the MMN paradigm can be 

identified, this approach may be useful for identifying critical time windows for preventative 

interventions or for predicting treatment response to pharmacological interventions that 

target either glutamatergic neurotransmission like d-serine, which has shown promising 

results in a recent clinical trial,50 or cholinergic neurotransmission, for example involving 

muscarinic (M1, M4) agonist xanomeline.51 

 

Limitations 

A few limitations of this study merit attention. First, the oddball paradigms in this study 

were not well-suited to separate low- and high-level PEs because environmental volatility 

was not manipulated explicitly throughout the task. Future studies should include explicit 

manipulations of volatility (i.e., changes in deviant probabilities over the course of the 

experiment, rather than a 90% stable probability) to better distinguish between different 

levels of hierarchical inference. Secondly, we assumed that participants acted as ideal 

Bayesian observers without taking subject-specific deviation from an ideal Bayesian 

observer into account by estimating subject-specific parameters based on both sensory 

input and behavioural responses. This is an inherent limitation of the passive MMN oddball 

paradigm. In light of this limitation, our results are more challenging to interpret. Group 
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differences could arise because different groups are better explained by different models or 

model parameter values. While MMN amplitude reductions have been frequently replicated 

in schizophrenia,4 future studies should also investigate the representation of precision-

weighted PEs using active oddball paradigms that require participants to detect and respond 

to infrequent target stimuli, such as the paradigm used in a recent study,52 which found that 

target P3b amplitudes were predictive of conversion to psychosis. 

 

Future directions 

Future studies should determine the cortical generators of changes in the expression of 

hierarchical precision-weighted PEs in the clinical high risk for psychosis state and early 

schizophrenia. Moreover, the biological implementation of these computations needs to be 

clarified further, for example through the use of models that include greater physiological 

detail to bridge the algorithmic description that our modelling approach offers and its 

physiological implementation in the brain.53 Dynamic causal models for electrophysiological 

data have been highlighted as computational assays that may allow to infer receptor 

densities of neuronal populations.13,54 These models have been validated in studies 

investigating NMDAR antibody encephalitis,55 dopaminergic action on NMDARs,56 and 

manipulations of cholinergic neurotransmission,45 and thus, constitute a promising way 

forward. Additionally, there is a need for more pharmacological studies in both animals and 

humans to map the relationship between hierarchical precision-weighted PEs and different 

neurotransmitter systems that are targeted by antipsychotic medication. 
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Conclusions 

In this study, we examined the computational mechanisms underlying pre-attentive 

auditory deviance processing in the clinical high risk for psychosis state and early 

schizophrenia and found evidence for aberrant expression of precision-weighted PEs at 

different levels of hierarchical inference. Our results suggest that the expression of low-level 

precision-weighted PEs is significantly altered in individuals at clinical high risk for psychosis 

that will later transition to psychosis, highlighting that this computational modelling 

approach captures relevant pathophysiological mechanisms and may prove useful for 

predicting transition to psychosis in CHR-P individuals.  
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Tables 

Table 1. Summary of posterior parameter estimates. 

 
HC 

n=44 
CHR-P 
n=38 

ESZ 
n=19 

CHR-C 
n=15 

CHR-NC 
n=16 

evolution rate 𝛚𝟐 
mean [SD] 

-0.20 
[0.78] 

-0.19 
[0.77] 

-0.36 
[0.85] 

-0.16 
[0.82] 

-0.22 
[0.78] 

meta-volatility 𝛚𝟑 
mean [SD] 

4.80 
[0.30] 

4.86 
[0.29] 

4.80 
[0.31] 

4.76 
[0.29] 

4.83 
[0.31] 

 
HC: Healthy controls. CHR-P: Individuals at clinical high risk for psychosis. ESZ: Early illness schizophrenia patients (≤ 5 years 
since initial hospitalization or initiation of antipsychotic medication). CHR-C: Converters. CHR-NC: Non-converters  
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Table 2. Demographic and clinical characteristics 

 HC 
n=44 

CHR-P 
n=38 

ESZ 
n=19 

Test 
statistic 

Post hoc 
contrasts 

CHR-C 
n=15 

CHR-NC 
n=16 

Test 
statistic 

Age 
mean [SD] 

19.97 
[5.50] 

17.40 
[3.50] 

23.91 
[6.17] 

F=10.838 
p<0.001 

ESZ>HC 
ESZ>CHR-P 

17.47 
[2.18] 

15.88 
[3.27] 

F=2.475 
p=0.127 

Sex 
f/m 

17/27 15/23 4/15 
χ2=2.178 
p=0.337 

 6/9 7/9 
χ2=0.045 
p=0.833 

Handednessa 
r/l/a 

37/5/2 31/3/4 16/1/2 
χ2=1.765 
p=0.779 

 13/1/1 12/1/3 
χ2=1.009 
p=0.604 

High risk typeb 
APS 
BLIP 
GRD 

 
 

 
38 
1 
1 

    
15 
1 
1 

 
16 
0 
0 

 

Diagnostic type 
Paranoid 
Disorganised 
Undifferentiated 
Catatonic 
Residual 
Schizoaffective 

   
11 
1 
2 
1 
1 
3 

     

Antipsychotic type 
Atypical only 
Typical only 
Atypical and typical 
None 
Unknown 

  
10 
0 
1 

27 
0 

 
13 
0 
3 
2 
1 

   
5 
0 
0 

10 
0 

 
3 
0 
0 

13 
0 

 

PANSS Positive 
mean [SD] 

  18.71 
[5.78] 

     

PANSS Negative 
mean [SD] 

  17.14 
[6.11] 

     

SOPS Positive 
mean [SD] 

 11.03 
[4.96] 

   12.47 
[5.07] 

9.00 
[4.91] 

F=3.739 
p=0.063 

SOPS Negative 
mean [SD] 

 10.74 
[6.35] 

  
 14.40 

[5.05] 
6.69 

[5.71] 
F=15.767 
p< 0.001 

 
All p-values are uncorrected. HC: Healthy controls. CHR-P: Individuals at clinical high risk for psychosis. ESZ: Early illness schizophrenia 
patients (≤5 years since initial hospitalization or initiation of antipsychotic medication). CHR-C: Converters. CHR-NC: Non-converters. APS: 
Attenuated psychotic symptoms. BLIP: Brief and limited intermittent psychotic symptoms. GRD: Genetic risk and deterioration syndrome. 
PANSS: Positive and Negative Syndrome Scale.58 SOPS: Scale of Prodromal Symptoms.26,27   Bold print highlights p-values significant at: 
p<0.05, uncorrected. aCrovitz-Zener questionnaire for handedness (right, left, or ambidextrous).59 bHigh risk types are not mutually 
exclusive. 
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