A Machine Learning Algorithm to Predict Hypoxic Respiratory Failure and risk of Acute Respiratory Distress Syndrome (ARDS) by Utilizing Features Derived from Electrocardiogram (ECG) and Routinely Clinical Data
View ORCID ProfileCurtis Earl Marshall, Saideep Narendrula, Jeffrey Wang, Joao Gabriel De Souza Vale, Hayoung Jeong, Preethi Krishnan, Phillip Yang, View ORCID ProfileAnnette Esper, Rishi Kamaleswaran
doi: https://doi.org/10.1101/2022.11.14.22282274
Curtis Earl Marshall
1Emory University
2University of Illinois at Urbana-Champaign, Champaign, IL
Saideep Narendrula
3Georgia Tech, Atlanta, GA 30332
Jeffrey Wang
1Emory University
Joao Gabriel De Souza Vale
5Emory University, Atlanta, GA 30312
Hayoung Jeong
1Emory University
7Duke University, Durham, NC 27708
Preethi Krishnan
3Georgia Tech, Atlanta, GA 30332
Phillip Yang
5Emory University, Atlanta, GA 30312
Annette Esper
5Emory University, Atlanta, GA 30312
Rishi Kamaleswaran
5Emory University, Atlanta, GA 30312
Data Availability
Access to de-identified Emory University cohort may be made available via approval from Emory Institutional Review Board (IRB) and Data Oversight Committee (DOC). Access to the computer code used in this research is available upon request to the corresponding author.
Posted November 17, 2022.
A Machine Learning Algorithm to Predict Hypoxic Respiratory Failure and risk of Acute Respiratory Distress Syndrome (ARDS) by Utilizing Features Derived from Electrocardiogram (ECG) and Routinely Clinical Data
Curtis Earl Marshall, Saideep Narendrula, Jeffrey Wang, Joao Gabriel De Souza Vale, Hayoung Jeong, Preethi Krishnan, Phillip Yang, Annette Esper, Rishi Kamaleswaran
medRxiv 2022.11.14.22282274; doi: https://doi.org/10.1101/2022.11.14.22282274
A Machine Learning Algorithm to Predict Hypoxic Respiratory Failure and risk of Acute Respiratory Distress Syndrome (ARDS) by Utilizing Features Derived from Electrocardiogram (ECG) and Routinely Clinical Data
Curtis Earl Marshall, Saideep Narendrula, Jeffrey Wang, Joao Gabriel De Souza Vale, Hayoung Jeong, Preethi Krishnan, Phillip Yang, Annette Esper, Rishi Kamaleswaran
medRxiv 2022.11.14.22282274; doi: https://doi.org/10.1101/2022.11.14.22282274
Subject Area
Subject Areas
- Addiction Medicine (390)
- Allergy and Immunology (705)
- Anesthesia (197)
- Cardiovascular Medicine (2880)
- Dermatology (245)
- Emergency Medicine (432)
- Epidemiology (12614)
- Forensic Medicine (10)
- Gastroenterology (811)
- Genetic and Genomic Medicine (4480)
- Geriatric Medicine (407)
- Health Economics (717)
- Health Informatics (2868)
- Health Policy (1059)
- Hematology (378)
- HIV/AIDS (909)
- Medical Education (418)
- Medical Ethics (115)
- Nephrology (466)
- Neurology (4242)
- Nursing (228)
- Nutrition (621)
- Oncology (2225)
- Ophthalmology (632)
- Orthopedics (255)
- Otolaryngology (322)
- Pain Medicine (270)
- Palliative Medicine (83)
- Pathology (489)
- Pediatrics (1182)
- Primary Care Research (487)
- Public and Global Health (6827)
- Radiology and Imaging (1502)
- Respiratory Medicine (908)
- Rheumatology (430)
- Sports Medicine (374)
- Surgery (475)
- Toxicology (60)
- Transplantation (204)
- Urology (175)