Abstract
Current Alzheimer’s disease (AD) research has a major focus on validating and discovering noninvasive biomarkers that can detect AD, benchmark disease severity, and aid in testing the efficacy of interventions. Structural magnetic resonance imaging (sMRI) is a well-validated tool used in diagnosis and for monitoring disease progression in AD. Much of the sMRI literature centers around hippocampal and other medial temporal lobe structure atrophy, which are strongly associated with cognition and diagnosis. Because atrophy patterns are complex and vary by patient, researchers have made efforts to condense more brain information into validated metrics. Many of these methods use machine learning (ML), which can be difficult to interpret clinically, hampering clinical adoption. Here, we introduce a practical, clinically meaningful and interpretable index which we call an “AD-NeuroScore.” Our approach is automated and uses multiple regional brain volumes associated with cognitive decline. We used a modified Euclidean inspired distance function to calculate the differences between each participant and a cognitively normal (CN) older adult template, adjusting for intracranial volume, age, sex, and scanner model. Here we report validation results, including sensitivity to diagnosis (CN, mild cognitive impairment (MCI), and AD) and disease severity (Clinical Dementia Rating Scale Sum of Boxes (CDR-SB), Mini Mental State Exam (MMSE), and Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-11) in 929 older adults (mean age=72.7 years, SD=6.3, Range=55.1-91.5, 50% Female) drawn from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. To determine if AD-NeuroScore might be predictive of disease progression, we assessed the relationship between the calculated AD-NeuroScore at baseline and change in both diagnosis and disease severity scores at 12, 24, 36, and 48-months. We performed additional validation in all analyses, benchmarking AD-NeuroScore against adjusted hippocampal volume (AHV). We found that AD-NeuroScore was significantly associated with diagnosis and all disease severity scores at baseline. Associations between AD-NeuroScore and disease severity (CDR-SB and ADAS-11) were significantly stronger than with AHV. Baseline AD-NeuroScore was also associated with change in diagnosis and changes in disease severity scores at all time points. Performance was equivalent, or in some cases superior, to AHV. These early validation results suggest that AD-NeuroScore has the potential to be a clinically meaningful biomarker for dementia.
Competing Interest Statement
The Pacific Neuroscience Institute Foundation (PNIF) is a public charity that holds a patent for AD-NeuroScore. JB, EP, DM, and SP, are employees of PNIF. GK, SB, and PS served as consultants/advisors for PNIF. PT received partial grant support from Biogen, Inc., for research unrelated to this manuscript. ST, CC, and HZ have nothing to disclose.
Funding Statement
We thank the participants and families volunteering for this research. We thank the Pacific Neuroscience Institute and Foundation staff and leadership, including the CEO and Founder, Dan Kelly, MD, Vice President, Melissa Coleman, Director of Research Administration and Operations Melanie Lampa, Director of Marketing, Zara Jethani, Executive Assistant, Danielle Wozniak, and Accounting Manager, Bersabel Belay and the Pacific Brain Health Clinic's Practice Manager, Brenda Smith for their support. This work is supported by the Pacific Neuroscience Institute Foundation, including the generous support of the John and Barabara McLoughlin Family as well as the Will and Cary Singleton Family. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The ethics committees/institutional review boards that gave ethical approval for the ADNI study are: Albany Medical Center Committee on Research Involving Human Subjects Institutional Review Board, Boston University Medical Campus and Boston Medical Center Institutional Review Board, Butler Hospital Institutional Review Board, Cleveland Clinic Institutional Review Board, Columbia University Medical Center Institutional Review Board, Duke University Health System Institutional Review Board, Emory Institutional Review Board, Georgetown University Institutional Review Board, Health Sciences Institutional Review Board, Houston Methodist Institutional Review Board, Howard University Office of Regulatory Research Compliance, Icahn School of Medicine at Mount Sinai Program for the Protection of Human Subjects, Indiana University Institutional Review Board, Institutional Review Board of Baylor College of Medicine, Jewish General Hospital Research Ethics Board, Johns Hopkins Medicine Institutional Review Board, Lifespan - Rhode Island Hospital Institutional Review Board, Mayo Clinic Institutional Review Board, Mount Sinai Medical Center Institutional Review Board, Nathan Kline Institute for Psychiatric Research & Rockland Psychiatric Center Institutional Review Board, New York University Langone Medical Center School of Medicine Institutional Review Board, Northwestern University Institutional Review Board, Oregon Health and Science University Institutional Review Board, Partners Human Research Committee Research Ethics, Board Sunnybrook Health Sciences Centre, Roper St. Francis Healthcare Institutional Review Board, Rush University Medical Center Institutional Review Board, St. Joseph's Phoenix Institutional Review Board, Stanford Institutional Review Board, The Ohio State University Institutional Review Board, University Hospitals Cleveland Medical Center Institutional Review Board, University of Alabama Office of the IRB, University of British Columbia Research Ethics Board, University of California Davis Institutional Review Board Administration, University of California Los Angeles Office of the Human Research Protection Program, University of California San Diego Human Research Protections Program, University of California San Francisco Human Research Protection Program, University of Iowa Institutional Review Board, University of Kansas Medical Center Human Subjects Committee, University of Kentucky Medical Institutional Review Board, University of Michigan Medical School Institutional Review Board, University of Pennsylvania Institutional Review Board, University of Pittsburgh Institutional Review Board, University of Rochester Research Subjects Review Board, University of South Florida Institutional Review Board, University of Southern, California Institutional Review Board, UT Southwestern Institution Review Board, VA Long Beach Healthcare System Institutional Review Board, Vanderbilt University Medical Center Institutional Review Board, Wake Forest School of Medicine Institutional Review Board, Washington University School of Medicine Institutional Review Board, Western Institutional Review Board, Western University Health Sciences Research Ethics Board, and Yale University Institutional Review Board.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Gavin Kress and Emily Popa shared equally to the joint first authorship
‡ Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
minor phrase change in acknowledgments
Data Availability
Full, open access to all de-identified ADNI imaging and clinical data is publicly and freely available to individuals who register with the ADNI and agree to the conditions in the “ADNI Data Use Agreement,” upon approval of a request that includes the proposed analysis and the named lead investigator (contact via http://adni.loni.usc.edu/data-samples/access-data/). Additional details about the ADNI data acquisition and sharing policies can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf. The code supporting the findings of this study is openly available in [repository name: "AD-NeuroScore"] at https://github.com/jbramen/AD-NeuroScore. The Python programming language (version 3.9) was used for all analyses (Python Software Foundation, https://www.python.org/).
Abbreviations
- (AD)
- Alzheimer’s Disease
- (ADAS-11)
- Alzheimer’s Disease Assessment Scale-Cognitive Subscale
- (aMCI)
- Amnestic Mild Cognitive Impairment
- (AUC-ROC)
- Area Under the Receiver Operator Characteristic Curve
- (CSF)
- Cerebrospinal Fluid
- (CDR-SB)
- Clinical Dementia Rating Scale Sum of Boxes
- (GM)
- Grey Matter
- (ML)
- Machine Learning
- (MTL)
- Medial Temporal Lobe
- (MCI)
- Mild Cognitive Impairment
- (MMSE)
- Mini-Mental State Exam
- (PHI)
- Protected Health Information
- (ROC)
- Receiver Operator Characteristic
- (ROI)
- Region of Interest
- (SD)
- Standard Deviation
- (sMRI)
- Structural Magnetic Resonance imaging
- (WM)
- White Matter