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     Abstract   

Current Alzheimer’s disease (AD) research has a major focus on validating and discovering 

noninvasive biomarkers that can detect AD, benchmark disease severity, and aid in testing the 

efficacy of interventions. Structural magnetic resonance imaging (sMRI) is a well-validated tool 

used in diagnosis and for monitoring disease progression in AD. Much of the sMRI literature 

centers around hippocampal and other medial temporal lobe structure atrophy, which are 

strongly associated with cognition and diagnosis. Because atrophy patterns are complex and vary 

by patient, researchers have made efforts to condense more brain information into validated 

metrics. Many of these methods use machine learning (ML), which can be difficult to interpret 

clinically, hampering clinical adoption. Here, we introduce a practical, clinically meaningful and 

interpretable index which we call an “AD-NeuroScore.” Our approach is automated and uses 

multiple regional brain volumes associated with cognitive decline. We used a modified 

Euclidean inspired distance function to calculate the differences between each participant and a 

cognitively normal (CN) older adult template, adjusting for intracranial volume, age, sex, and 

scanner model. Here we report validation results, including sensitivity to diagnosis (CN, mild 

cognitive impairment (MCI), and AD) and disease severity (Clinical Dementia Rating Scale Sum 

of Boxes (CDR-SB), Mini Mental State Exam (MMSE), and Alzheimer's Disease Assessment 

Scale-Cognitive Subscale (ADAS-11) in 929 older adults (mean age=72.7 years, SD=6.3, 

Range=55.1-91.5, 50% Female) drawn from the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) study.  To determine if AD-NeuroScore might be predictive of disease progression, we 

assessed the relationship between the calculated AD-NeuroScore at baseline and change in both 

diagnosis and disease severity scores at 12, 24, 36, and 48-months. We performed additional 

validation in all analyses, benchmarking AD-NeuroScore against adjusted hippocampal volume 
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(AHV).  We found that AD-NeuroScore was significantly associated with diagnosis and all 

disease severity scores at baseline. Associations between AD-NeuroScore and disease severity 

(CDR-SB and ADAS-11) were significantly stronger than with AHV. Baseline AD-NeuroScore 

was also associated with change in diagnosis and changes in disease severity scores at all time 

points. Performance was equivalent, or in some cases superior, to AHV. These early validation 

results suggest that AD-NeuroScore has the potential to be a clinically meaningful biomarker for 

dementia.  

 

Keywords: mild cognitive impairment, Alzheimer’s disease, dementia, magnetic resonance 

imaging, biomarker  
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Abbreviations  

Alzheimer’s Disease (AD) 

Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-11) 

Amnestic Mild Cognitive Impairment (aMCI) 

Area Under the Receiver Operator Characteristic Curve (AUC-ROC) 

Cerebrospinal Fluid (CSF) 

Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) 

Grey Matter (GM) 

Machine Learning (ML) 

Medial Temporal Lobe (MTL)  
 
Mild Cognitive Impairment (MCI) 

Mini-Mental State Exam (MMSE) 

Protected Health Information (PHI) 

Receiver Operator Characteristic (ROC) 

Region of Interest (ROI)  
 
Standard Deviation (SD) 

Structural Magnetic Resonance imaging (sMRI) 

White Matter (WM) 
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1. Introduction  

The prevalence of Alzheimer’s disease (AD) is increasing with the aging population. 

According to the World Health Organization, there are an estimated 36 million patients with 

AD in 2021 with approximately 6.5 million new cases reported annually (WHO, 2021). AD is a 

progressive neurodegenerative disease characterized by cognitive decline and early atrophy 

within the medial temporal lobe (MTL) followed by progression to the rest of the 

brain. Neurodegeneration often precedes cognitive decline (Gómez-Isla et al., 1996a), making 

atrophy assessed with structural magnetic resonance imaging (sMRI) an ideal clinical biomarker 

for detecting AD early and forecasting future cognitive and functional deterioration. Detecting 

AD prior to the point of irreversible neurodegeneration could improve the efficacy of currently 

available treatments (Coupé et al., 2015a) and improvements to current quantitative sMRI 

would add value in both clinical and research settings.  

At later stages of AD, additional and validated quantitative sMRI metrics could add 

clinical utility while monitoring disease progression. Neurocognitive assessments become more 

burdensome and less valuable as patients convert to moderate and severe AD. Regardless, there 

is still high clinical value in tracking a patient’s disease progression and anticipating future 

deterioration throughout all stages of illness. sMRI is a passive, relatively short and inexpensive 

measurement, making it an ideal modality for monitoring disease progression in general, but 

especially in later stage AD patients.  

sMRI has wide adoption in both clinical and research settings. The majority of the sMRI 

literature centers around hippocampal or other MTL measures. The magnitude of hippocampal 

volume atrophy is strongly associated with cognition, diagnosis, and AD-etiology (Csernansky 

et al., 2004; Gosche et al., 2002; Jack et al., 2002; Silbert et al., 2003). Hippocampal shape 
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(Achterberg et al., 2014), texture (Sørensen et al., 2016), grading (Coupé et al., 2015b) and 

subfield volumes (Khan et al., 2015) are all validated hippocampus-based markers of AD-

related etiology. The MTL has generally been a focus due to its critical role in memory and 

because MTL atrophy is often detectable in cognitively normal (CN) individuals before 

symptoms of cognitive decline arise (Jack et al., 1997). 

However, other parts of the brain also provide important information, especially in the 

differential diagnosis of mild cognitive impairment (MCI), AD, and frontotemporal lobe 

dementia (FTD), which have overlapping atrophy within the MTL (Rabinovici et al.,2007). A 

large body of research on AD-related etiology shows volume loss (Rabinovici et al., 2007) that 

quickly spreads from the MTL (Braak et al., 1997; Dickerson et al., 2001; Frisoni et al., 1999; 

Gómez-Isla et al., 1996b; Laakso et al., 1998, 1996; Rabinovici et al., 2007; Thompson et al., 

2007, 2003; Vercelletto et al., 2002) to the parietal lobe (Jacobs et al., 2012a), where grey 

matter (GM) and white matter (WM) loss likely occurs relatively early in cortical progression 

and is linked functionally to important AD symptoms such as impaired memory retrieval, 

naming ability, attention, and executive function (Cabeza et al., 2008; Jacobs et al., 2012b; 

Lindeboom and Weinstein, 2004). Over time and with variability in the order and rate of decline 

amongst patients, neurodegeneration spreads to posterior temporal, lateral occipital (Rabinovici 

et al., 2007), and left frontal lobes as well as limbic structures including the thalamus, cingulate 

gyrus, and nucleus accumbens (Nie et al., 2017). Because the underlying pattern of atrophy is 

important to consider in each patient, clinical imaging reports that quantify regional atrophy are 

standard in many dementia clinics and regional volumes are common endpoints in clinical 

research.   
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Several medical imaging companies have implemented regional brain volume reports in 

clinical settings (Ahdidan et al., 2016; Brewer et al., 2009; Cavedo et al., 2022). These tools are 

helpful in understanding the overall pattern of neurodegeneration. However, the spatiotemporal 

pattern of atrophy varies widely in patients, and it is difficult to quickly assess a patient’s 

overall neurodegeneration from several numbers, reducing utility in diagnosis, which is most 

commonly done using neurocognitive assessment. Further, patients often receive scans at 

different facilities or on different scanners, and many of the current commercial tools do not 

account for these differences, affecting the validity of longitudinal follow-up reports. A valid, 

harmonized summary score with norms and cutoffs would be an important addition to existing, 

clinically-implemented regional brain volume reports. In research settings, several regions are 

frequently used as endpoints (e.g., hippocampal, entorhinal cortical, lateral ventricle, and whole 

brain volumes). Depending on the design and sample size of the study, reducing the number of 

regions to be considered as endpoints could enhance sensitivity. Additionally, a validated, 

harmonized score that could be compared across multiple research studies could be valuable for 

meta-analyses and help researchers build on each other’s findings.  

Because atrophy patterns are complex and vary by patient, making the qualitative 

interpretation of several individual region of interest (ROI) results laborious, some researchers 

have condensed sMRI information into validated metrics for AD-related neurodegeneration. 

Early sMRI-based, multivariate analysis approaches have focused on the classification of CN 

and AD (Riciotti et al., 2012a, Vermuri, 2009). As the field has matured, researchers have aimed 

to classify more disease stages (i.e. CN, MCI, and AD) (Rallabandi et al., 2020; Popuri et al., 

2020) as well as predict who will stabilize and who will decline (Coupé et al., 2015c; Ezzati et 

al., 2019; Popuri et al., 2020b). Most of these multivariate scoring methods use machine learning 
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(Casanova et al., 2018; Diciotti et al., 2012a; Vermuri, 2009) and several combine sMRI with 

other imaging, biochemical, or clinical features to improve performance (Dukart et al., 2013; 

Salvatore et al., 2018; Vemuri et al., 2009a). 

The objective of this study is to develop and validate a practical, clinically meaningful, 

and interpretable biomarker, which we call an “AD-NeuroScore” by summarizing AD-related 

neurodegeneration using only sMRI-based measurements. Our approach uses a vector of 

multiple sMRI ROI-based features that are associated with cognitive decline in an intuitive 

manner that is easy to implement. ROI-based features from only one type of image were selected 

because they are widely adopted by researchers and clinicians and because their significance is 

well understood. This is in contrast to multivariate models that successfully use machine learning 

approaches to generate probability scores (Casanova et al., 2018b; Diciotti et al., 2012b; Lu et 

al., 2021; Popuri et al., 2020b; V P.Subramanyam Rallabandi et al., 2020; Vemuri et al., 2009a) 

or more narrowly focused regional scores (Achterberg et al., 2014; Ahdidan et al., 2016; Brewer 

et al., 2009; Coupé et al., 2015d; Elahi et al., 2015; Sean M Nestor et al., 2008; Sørensen et al., 

2016). Machine learning-based, black box models are powerful but have been have not yet been 

widely implemented in neurological practices. Model interpretability is an important barrier to 

clinical adoption despite the need for quality control in ROI-based approaches (Pinto et al., 

2022). Further, while it is possible to understand the algorithms behind the ML models, this is 

not the same as having a clinically interpretable and meaningful metric. Here we developed an 

automated approach to assist in clinical practice, resulting in a summary score calculated using 

only well-understood sMRI regional volumes, where the relative contribution of each ROI is 

transparent. More narrowly focused ROI-based approaches are interpretable (Achterberg et al., 

2014; Ahdidan et al., 2016; Archetti et al., 2021; Brewer et al., 2009; Casanova et al., 2013; 
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Coupé et al., 2015d; Davatzikos et al., 2009; Sørensen et al., 2016), however, they, in some cases 

have difficulty capturing a significant portion of sMRI features due to the loss of information in 

the process of combining to a single metric. The biomarker we propose here, AD-NeuroScore, is 

automated, computationally inexpensive, and relies on widely adopted and validated sMRI 

features. We believe these attributes could enable widespread research and clinical deployment.  

 

2. Methods  

2.1. Participants 

2.1.1 Data Acquisition and Demographics 

CN individuals and patients with MCI or AD diagnosis were drawn from the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) (Jack et al., 2008; Mueller 

et al., 2005a, 2005b). The ADNI is a global research study launched in 2003, primarily aimed at 

evaluating biological markers to measure the progression of MCI and early AD. Biomarkers will 

be derived from MRI, PET, and blood and cerebrospinal fluid (CSF)-based biospecimen assays 

and their discovery and validation are intended to facilitate the development of treatments to 

slow or halt AD progression. For up-to-date information, see www.adni-info.org.  

All ADNI studies were conducted according to the Good Clinical Practice guidelines, the 

Declaration of Helsinki, the U.S. 45 Code of Federal Regulations (CFR) Part 46 and 21 CFR Part 

50 – Protection of Human Subjects, and 21 CFR Part 56 - Institutional Review Boards. Written 

informed consent and HIPAA authorizations were obtained from all participants or authorized 

representatives prior to the conducting of protocol-specific procedures. The ADNI protocol was 
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approved by the Institutional Review Boards of all participating institutions, listed in File 1 in 

Supplementary Materials (Mukherji et al., 2021).  

In this work, a total of 1,619 subjects with available 3T, accelerated, T1-weighted MR 

images at baseline were collated from the ADNI-GO, ADNI-2, and ADNI-3 study phases; of 

these, 388 participants were discarded due to incomplete data used to calculate or validate the 

biomarker, including diagnosis (n=42), sex (n=45), age (n=8), scanner manufacturer (n=3), and 

at least one brain volume (n=298). Acquisition methods are detailed by Chow et al. (Chow et al., 

2015). The remaining cohort of 1,231 individuals was comprised of 488 CN, 564 MCI, and 179 

mild AD. Participants were diagnosed at baseline and reassessed at each study visit (Petersen et 

al., 2010). The study sample was subdivided into the following three cohorts: region of interest 

(ROI) selection, cognitively normal template creation, and experimental (see Table 1 for a full 

description of all cohort demographics). 

 
 
 
 

 

Dataset  Clinical Measure  
Group  

CN  MCI  AD  All 

ROI 
Selection 

n  50 50 50 150 
Subjects (% Female) 62 48 42 51 
Age  68.6 (±6.5, 55.1-88.7) 71.9 (±8.6, 55.2-88.7) 74.9 (±7.3, 55.3-89.7) 71.8 (±7.9, 55.1-89.9) 
Education   17.2 (±1.9) 16.2 (±2.3) 15.7 (±2.4) 16.4 (±2.3) 

Template 

n  152       
Subjects (% Female) 50       
Age  71.7 (±5.9, 55.6-85.3)       
Education  16.9 (±2.2)       

Experimental 

n  286 514 129 929 
Subjects (% Female) 64 45 43 50 
Age  72.5 (±6.3, 56.3-90.2) 72.1 (±7.5, 55.1-91.5) 74.7 (±8.3, 55.7-90.4) 72.6 (±7.3, 55.1-91.5) 
Education  16.5 (±2.5) 16.2 (±2.6) 15.7 (±2.6) 16.2 (±2.6) 

Table 1. Demographic Information. Full description of all cohort demographics at baseline. Total number of subjects (n), sex (by percentage 
female), age, and education in years are reported for each cohort in full (All), as well as for CN, MCI, and AD diagnostic subdivisions. The CN 
Template Cohort was comprised of only CN individuals. Values for age and education are summarized in the form mean (± standard deviation, 
min - max) and mean (± standard deviation), respectively.  
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2.1.2 Region of Interest Selection Cohort 

To determine the regional volumes that were associated with cognitive impairment, a 

sample of 150 age- and sex-matched individuals from the overall participant pool were pseudo-

randomly selected using the numpy random module (Harris et al., 2020) with equivalent 

proportions of each diagnostic category (see Table 1 for a full description of ROI selection 

cohort demographics) and grouped into a cohort in order to quantitatively determine ROI 

inclusion and weighting (see Methods 2.3.2. ROI Selection). 

 

2.1.3 Cognitively Normal Template Cohort 

A sample of cognitively normal, age- and sex-matched individuals were randomly 

selected from the remaining participant pool to generate a CN template. The purpose of this 

template was to represent the average, healthy older adult brain (see Table 1 for a full 

description of CN template demographics). The sample size for this cohort was set to 152 

individuals, to match that which was drawn from a normative adult population to construct the 

MNI152 template, a classic and widely adopted structural brain atlas based on the group-wise 

registration of 152 3D, T1-weighted MR images (Mazziotta et al., 1995a, 1995b).  

 

2.1.4 Experimental Cohort 

The remaining 929 participants were grouped into an experimental cohort for sMRI 

metric extraction and testing (see Table 1 for a full description of experimental cohort 
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demographics). Baseline analyses were conducted for all 929 participants of the experimental 

cohort.  

Longitudinal analyses were conducted on all participants who had follow-up data 

available. These participants were classified as those who worsened in diagnosis (denoted as 

Diagnosisdecline) and those who did not change in diagnosis or, in rare cases, improved (denoted as 

Diagnosisstable), based on their diagnosis at 12, 24, 36 and 48-month follow-up sessions. 

Diagnosisdecline is thus composed of those who declined from CN to MCI or CN to AD (CNdecline) 

and from MCI to AD (MCIdecline); Diagnosisstable is the group who either did not change in 

diagnosis or improved (composed of MCIstable, CNstable, and ADstable). There was no later stage 

diagnostic category than AD in this sample, and therefore all AD participants were ADstable, with 
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no ADdecline group (see Figure 1 for a flowchart detailing the construction of longitudinal 

cohorts). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart visualizing baseline allocation of subjects into the 3 experimental cohorts (ROI Selection, CN 
Template, and Experimental) and longitudinal construction of the stable and decline groups at 12, 24, 36, and 48-
months. Patients whose diagnosis progressed relative to baseline were classified into a Diagnosis (decline) group, 
while those who did not worsen were categorized as Diagnosis (stable) for each respective time point. 
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2.2 Neurocognitive Assessments  

Participant scores on the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB), 

Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS-11), and Mini-Mental State 

Exam (MMSE) were collated for all experimental cohort participants with scores available at 

each time point. The original ADAS-Cog (Rosen et al., 1984), referred to as the ADAS-11, is 

comprised of 11 subtests whose scores are summed (unweighted) to generate a total raw score 

from 0 to 70. Higher scores on the ADAS-11 correspond with a larger number of errors and 

poorer performance, as rated by clinicians (Grochowalski et al., 2015). The MMSE is a short, 11 

items questionnaire routinely used to measure cognitive impairment (Folstein et al., 1975). The 

MMSE has six subdomains: time orientation, place orientation, registration, attention, recall, 

language, and visual construction and yields a score from 0 to 30, with lower scores representing 

greater cognitive dysfunction  The CDR-SB (Balsis et al., 2015; Hughes et al., 1982; Morris, 

1993; O’Bryant et al., 2008) similarly measures cognitive function, along with functional ability, 

as rated by clinicians across six domains (also referred to as boxes): memory, orientation, 

judgement and problem-solving, community affairs, home and hobbies, and personal care. 

Individual scores for each domain (or box) are summed to produce a total score ranging from 0 

to 18, where higher scores stage more severe dementia (O’Bryant et al., 2008) 

2.3  AD-NeuroScore  

2.3.1.  

Cortical reconstruction and volumetric segmentation of the 3T, accelerated, T1-weighted MR 

images was performed with version 7.1 of the Freesurfer image analysis suite, which is 
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documented and freely available for download online (http://surfer.nmr.mgh.harvard.edu/). The 

details of these procedures are described in previous publications (Dale et al., 1999; Desikan et 

al., 2006; Fischl et al., 2004a, 2004b, 2002, 2001, 1999a, 1999b; Jovicich et al., 2006; Reuter et 

al., 2010; Segonne et al., 2007, 2004). With these methods, eighty-four cortical and subcortical 

regional volumes were estimated at baseline for each subject. Additionally, results were 

reviewed using the ENIGMA structural imaging quality control protocols 

(http://enigma.usc.edu/) (Stein et al., 2012).  

2.3.2. ROI Selection  

   In order to determine the brain regions most sensitive to diagnosis at baseline, we first 

performed an Analysis of Variance (ANOVA) in our ROI selection cohort to test for an effect of 

diagnosis for each of the 84 regions (using a Bonferroni-corrected alpha of 0.05/84; see 

Supplementary File 2 for a complete list of the 84 cortical and subcortical regions tested). 

Forty-one regions were found to be significant. All these regions were consistent with the 

existing literature (Harper et al., 2017; Yin et al., 2013; Zanchi et al., 2017) and were used to 

compute AD-NeuroScore (Table 2).  
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FreeSurfer ROI Label Anatomical Name  Z  CN Template Mean Vol (±SD) (mm3)  
Lhippo Left Hippocampus 9.12 0.48 (±0.74) 
Lamyg Left Amygdala 8.43 0.60 (±0.79) 
Ramyg Right Amygdala 8.37 0.54 (±0.80) 
Rhippo  Right Hippocampus  7.82 0.45 (±0.71) 
L_middletemporal_grayvol Left Middle Temporal Lobe 6.53 0.40 (±0.88) 
L_fusiform_grayvol Left Fusiform Gyrus  6.20 0.27 (±0.82) 
L_inferiorparietal_grayvol Left Inferior Parietal Lobe  6.11 0.33 (±0.90) 
R_middletemporal_grayvol Right Middle Temporal Lobe  6.12 0.42 (±0.92) 
L_inferiortemporal_grayvol Left Inferior Temporal Lobe  5.88 0.36 (±0.85) 
L_precuneus_grayvol Left Precuneus  5.81 0.26 (±0.91) 
L_rostralmiddlefrontal_grayvol Left Rostral Middle Frontal Lobe  5.69 0.16 (±1.06) 
R_inferiortemporal_grayvol Right Inferior Temporal Lobe  5.54 0.27 (±0.87) 
R_precuneus_grayvol Right Precuneus  5.50 0.34 (±0.93) 
R_inferiorparietal_grayvol Right Inferior Parietal Lobe  5.48 0.33 (±0.88) 
R_superiortemporal_grayvol Right Superior Temporal Lobe  5.44 0.35 (±0.94) 
R_entorhinal_grayvol Right Entorhinal Cortex  5.39 0.12 (±0.77) 
Lthal Left Thalamus  5.17 0.33 (±1.01) 
R_lateralorbitofrontal_grayvol Right Lateral Orbitofrontal Cortex  5.02 0.14 (±0.91) 
L_superiortemporal_grayvol Left Superior Temporal Lobe 5.01 0.28 (±0.87) 
L_insula_grayvol Left Insula  4.86 0.19 (±0.86) 
L_bankssts_grayvol Left Banks of the Superior Temporal Sulcus 4.75 0.12 (±0.93) 
L_lateralorbitofrontal_grayvol Left Lateral Orbitofrontal Cortex 4.67 0.26 (±0.89) 
L_isthmuscingulate_grayvol Left Isthmus of the Cingulate Gyrus 4.66 0.20 (±1.04) 
R_parahippocampal_grayvol Right Parahippocampal Gyrus  4.64 0.21 (±0.91) 
Raccumb Right Nucleus Accumbens  4.58 0.33 (±0.88) 
L_entorhinal_grayvol Left Entorhinal Cortex  4.56 0.23 (±0.74) 
R_rostralmiddlefrontal_grayvol Right Rostral Middle Frontal Gyrus  4.50 0.18 (±1.04) 
L_superiorparietal_grayvol Left Superior Parietal Lobe  4.44 0.14 (±0.87) 
Rthal Right Thalamus  4.42 0.31 (±1.02) 
L_superiorfrontal_grayvol Left Superior Frontal Gyrus 4.38 0.17 (±0.89) 
R_fusiform_grayvol Right Fusiform Gyrus  4.25 0.23 (±0.88) 
R_insula_grayvol Right Insula  4.14 0.21 (±0.93) 
L_lateraloccipital_grayvol Left Lateral Occipital Cortex 4.08 0.31 (±0.87) 
R_superiorfrontal_grayvol Right Superior Frontal Gyrus  3.96 0.16 (±0.99) 
L_posteriorcingulate_grayvol Left Posterior Cingulate Cortex  3.86 0.29 (±0.98) 
R_isthmuscingulate_grayvol Right Isthmus of the Cingulate Gyrus 3.78 0.13 (±0.87) 
R_superiorparietal_grayvol Right Superior Parietal Lobe  3.75 0.26 (±1.00) 
R_parsorbitalis_grayvol Pars Orbitalis  3.70 0.19 (±0.92) 
R_posteriorcingulate_grayvol Right Posterior Cingulate Cortex  3.60 0.24 (±0.90) 
Laccumb Left Nucleus Accumbens  3.60 0.45 (±1.04) 
R_lateraloccipital_grayvol Right Lateral Occipital Cortex  3.47 0.24 (±0.83) 

Table 2. Significant ROIs by Z-Score Ranking and CN Template Values. Resulting 41 significant regions of interest (ROIs) 
extracted by performing ANOVA for each of the 84 regions in the ROI selection cohort are reported in the above table along with 
corresponding z scores. Significance was established based on an alpha=0.05, Bonferroni corrected. Structures are identified by both 
the FreeSurfer version 7.1 ROI labels and conventional anatomical names. Mean volumes and standard deviations (SD) of the CN 
template cohort are included for each respective region.  
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2.4.1. Cognitively Normal Template 

To generate a CN template vector representative of the healthy average older adult brain, 

each volume that was determined from the ROI selection process was averaged across all CN 

template cohort participants (see Table 2). Data harmonization procedures were applied to each 

region in the CN template vector (see Methods 2.4.2. Data Harmonization). This CN template 

vector had the same dimensions as vectors extracted from experimental cohort participants. 

These two vectors were used to compute the distance metrics evaluated in this work (see 

Methods 2.4.3. Calculating the Z-Weighted Euclidean Distance). 

 

2.4.2. Data Harmonization 

In order to account for factors such as interindividual variations in head size, age, sex, 

and MRI acquisition features like scanner model and manufacturer, we utilized a w-score, a data 

harmonization approach previously validated on sMRI data (Ma et al., 2019; Popuri et al., 

2020a). This approach uses a generalized linear model (GLM) framework, where the structural 

volume for a given region of each participant is modeled as the linear combination of all 

covariates as shown in Equation (1): 

V!" = 𝛽#" +% 𝛽$"𝑥$,! + ℇ!"
&'

$
 (1) 
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Here, the volume V!" of region r for subject i, is modeled as the sum over NC covariates (age, 

sex, scanner model, and total ICV) of coefficient	𝛽$" , for covariate c, multiplied by the value of 

the covariate, 𝑥$,! ,	plus the residual term, ℇ!".  

To compute the w-score, 𝑤!" ,	also known as the standardized residual, we took the z-

transformation of the residual term from Eq. (1), ℇ!", as shown in Equation (2):   

𝑤!" =
(ℇ!" − 𝜇ℇ")

𝜎ℇ"
 (2) 

where 𝜇ℇ" and 𝜎ℇ" represent the mean and standard deviation, respectively, of the residual term for 

a given subject’s regional brain volume. In this way, regional volumes used to calculate AD-

NeuroScore were adjusted for the effects of age, sex, head size, and scanner model. 

2.4.3 Calculating the Z-Weighted Euclidean Distance 

To compute the difference between each experimental cohort participant and the CN 

template, we employed a novel modified Euclidean inspired distance function which we call the 

Z-weighted Euclidean distance (ZWE). A traditional Euclidean distance metric is calculated by 

treating the list of significant, harmonized regional volumes as a vector in n-dimensional space, 

where n is the number of regions, and computing the Euclidean distance between each 

participant and the CN template vectors. Our ZWE distance function differed only in that each 

region was multiplied by a weight resulting from each region’s level of significance (z-score) as 

determined during ROI selection process as shown in Equation (3): 

𝑍𝑊𝐸 = (&[(𝑤!" −𝑤!#)𝑧!]$
%&

!'(

)
(/$

 (3) 

where 𝑧! refers to the average of the z-scores associated with the p-values across the three 

possible pairwise comparisons (CN vs MCI, CN vs AD, and MCI vs AD) for a given region, i, 
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and NR denotes the total number of regions. The ZWE distance was computed between the 

harmonized residual of each subject, 𝑤!), and the CN template, 𝑤!*. Thus, the more significant a 

region was in ROI-selection, the greater its contribution to the computed AD-NeuroScore. The 

concept of weighing multivariate sums by measures of significance has been used in a number of 

applications since its inception in the proposal of Hotelling’s T2 distance in 1947 (Gutman et al., 

2013; Hotelling, 1947; Hua et al., 2013). The significant ROIs listed in Table 2 are visualized in 

Figure 2, with a color scale indicating respective 𝑧! weighting.  

 

 

 

 

 

 

 

 

 

 

 

We investigated several other methods for computing the difference between each 

experimental cohort subject and the CN template. Each of these algorithms similarly involved 

computing a distance function between like objects constructed from the harmonized, significant 

regional brain volumes, which we determined in the ROI selection step. Generally, the distance 

Figure 2. The 41 significant regions of interest (ROIs) extracted by performing ANOVA for each of the 84 
regions in the ROI selection cohort are visualized above on the Allen 500-micron Human Brain Atlas. The 
color scale depicts the z-score-based weighting of each ROI in AD-NeuroScore (ADNS), as described in 
Section 2.4.4. The Brainrender python library (https://github.com/brainglobe/brainrender) was used to create 
this figure. The following letters denote anatomical orientation: Anterior (A), Posterior (P), Superior (S), 
Inferior (I), Left Lateral Surface (LL), Left Medial Surface (LM), Right Lateral Surface (RL), Right Medial 
Surface (RM).  
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functions fell into one of two categories (curves and points). For the distance functions that 

computed distances between curves, in addition to projecting the curve in one dimensional space, 

the k-false nearest neighbors method was implemented to embed each curve in n-dimensions 

(see Supplementary File 3 for further details). The functions which computed a distance 

between curves included the Fréchet distance and the Hausdorff distance. The Fréchet Distance 

is one method used to quantify the similarity between two curves or sets of points in space, with 

an emphasis on the location and ordering of points (Dumitrescu and Rote, 2004). Similarly, the 

Hausdorff distance measures how far two subspaces of a metric space are from each other; 

however, it does not account for the flow or order of points (Maiseli, 2021). The vector-based 

distance functions included the Euclidean and ZWE distance. Further details along with 

equations modeling these mathematical distances are included in Supplemental File S3. 

  Statistical analyses tested the performance of each distance metric based on sensitivity to 

diagnosis, disease severity, and progression (See Tables 1-3 in Supplementary Materials). All 

metrics evaluated were benchmarked using AHV, an NIA-AA diagnostic biomarker for 

Alzheimer’s disease (Jack et al., 2018) (Supplemental Table 1).  The optimal biomarker, the 

ZWE distance, was selected as our “AD-NeuroScore.” (See 2.5 Validation Procedures). 

 

2.5. Validation Procedures 

2.5.1. Baseline Validation Procedures 

At baseline, we evaluated sensitivity to diagnosis of AD-NeuroScore by calculating the area 

under the Receiver Operating Characteristic curve (AUC-ROC) and the associated 95% 

confidence intervals, using a logistic regression model for each pairwise comparison of 
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diagnostic groups (CN vs MCI, MCI vs AD, and CN vs AD). Sensitivity to diagnosis was further 

assessed using pairwise, two-tailed t-tests for each possible diagnostic group comparison, using a 

Holm-Bonferroni-corrected alpha of 0.05. Results were then converted to z-scores and Cohen’s d 

was calculated to indicate effect size.  

 Baseline associations of AD-NeuroScore and AHV with disease severity, operationalized as 

MMSE, ADAS-11, and CDR-SB scores, were tested using linear regression, both in the overall 

baseline experimental cohort and in each diagnostic sub-group. In addition to examining the 

significance of the slope using a Holm-Bonferroni-corrected alpha of 0.05, we also estimated the 

correlation coefficients and compared the performance of AD-NeuroScore and AHV by 

conducting a Fisher’s z-test of the z-transformed correlation coefficients, using the Holm-

Bonferroni method to adjust for the 3 comparisons at baseline.  

 

2.5.2. Longitudinal Validation Procedures  

To determine if AD-NeuroScore might be predictive of disease progression, we assessed 

the relationship between AD-NeuroScore at baseline and both the change in diagnosis and 

change in disease severity at 12, 24, 36, and 48 months. Logistic regression was used to examine 

whether baseline AD-NeuroScore was predictive of change in diagnosis (Diagnosisdecline vs. 

Diagnosisstable); AUC-ROC (and associated 95% CI) was used as a metric of the predictive 

ability. We also compared the baseline distribution of AD-NeuroScore between Diagnosisdecline 

and Diagnosisstable groups using pairwise, two-tailed t-tests in the full experimental cohort and 

subsequently further stratified by baseline diagnosis (MCI or CN) to investigate if the ability to 

predict decline is driven by a specific patient population. Similar to the baseline validation 
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procedures, the results for all comparisons were converted to z-scores, and Cohen’s d was 

calculated to assess effect size.   

Longitudinal association with disease severity was tested using linear regression between 

baseline metric scores and the change in the neuropsychological assessment scores (MMSE, 

ADAS-11, and CDR-SB) from baseline, at each respective longitudinal session. Significance 

was assessed using a Holm-Bonferroni-corrected alpha of 0.05. All absent longitudinal 

comparisons were excluded due to insufficient sample size.  

2.6. Validation Using Clinically Implemented ROI 

To validate AD-NeuroScore in the context of the alternative imaging analysis tools 

frequently used by and accessible to clinicians, a vector of Neuroreader®-analagous ROI volumes 

was approximated by transforming the FreeSurfer results into a less granular vector of regions 

closely matching the Neuroreader® atlas. To investigate how these changes might impact 

biomarker performance, 80 of the 84 brain regions estimated by FreeSurfer were surjectively 

mapped to construct the 22 Neuroreader® ROI structures. Four of the eighty-four FreeSurfer-

estimated regions, the left and right nucleus accumbens and insula, had no corresponding 

Neuroreader® ROI, and were thus dropped from this branch of the analysis. The calculation and 

validation methods used to compute and validate the Freesurfer-based AD-NeuroScore were 

applied to the pseudo-Neuroreader® ROI vector (Supplementary Tables S4-S7). 

2.7. Data Availability  
 

Full, open access to all de-identified ADNI imaging and clinical data is publicly and 

freely available to individuals who register with the ADNI and agree to the conditions in the 
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“ADNI Data Use Agreement,” upon approval of a request that includes the proposed analysis 

and the named lead investigator (contact via http://adni.loni.usc.edu/data-samples/access-data/).  

Additional details about the ADNI data acquisition and sharing policies can be found at 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf. 

The code supporting the findings of this study is openly available in [repository name: 

“AD-NeuroScore”] at https://github.com/jbramen/AD-NeuroScore. The Python programming 

language (version 3.9) was used for all analyses (Python Software Foundation, 

https://www.python.org/).  

3. Results  

3.1. Baseline Validation  

3.1.1. Baseline Sensitivity to Diagnosis  

AD-NeuroScore was significantly associated with diagnosis at baseline (p<0.001 for all 

comparisons, Holm-Bonferroni corrected; Table 3). AD-NeuroScore performed best at 

distinguishing AD from other groups (CN and MCI) and least well at distinguishing CN and MCI 

participants. AD-NeuroScore performed as well as our benchmark, AHV (p<0.001 for all 

comparisons, Holm-Bonferroni corrected), in this cross-sectional validation (Table 3). AUC-ROC 

values of AD-NeuroScore and AHV were similar across all group comparisons. Visual inspection 

of the overlaid AD-NeuroScore and AHV AUC-ROC curves for AD comparisons (CN vs AD and 

MCI vs AD) indicated that at low false positive rates, the AD-NeuroScore true positive rate tended 

to be higher (Figure 3). Examining the distribution of AD-NeuroScore and AHV for each 

diagnostic group at baseline (Figure 4), AD-NeuroScore qualitatively demonstrated greater 
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separation between diagnostic category medians, with more centrally concentrated distributions 

and longer tails in CN and MCI groups at the edges of the distribution. 

 

 

     

Group Comparison Metric AUC [95% CI] Cohen's d [95% CI] z-score  

CN vs MCI 
AD-NeuroScore 0.66 [0.59, 0.73] -0.56 [-0.59, -0.53]*** -7.46 

AHV 0.65 [0.58, 0.72] 0.55 [0.52, 0.58]*** -7.27 

CN vs AD  
AD-NeuroScore 0.91 [0.86, 0.96] -2.06 [-2.24, -1.88]*** -16.37 

AHV 0.88 [0.81, 0.95] 1.72 [1.55, 1.89]*** -14.27 

MCI vs AD   
AD-NeuroScore 0.80 [0.71, 0.89] -1.16 [-1.19, -1.14]*** -11.23 

AHV 0.76 [0.67, 0.84] 0.92 [0.90, 0.94]*** -9.04 

 

 

 

 

 

 

 

Table 3. Baseline Results for AD-NeuroScore Sensitivity to Diagnosis. Sensitivity to diagnosis assessed using 
pairwise, two-tailed t-tests performed for each possible diagnostic group comparison. Resulting z-scores, effect sizes 
(Cohen’s d) with 95% confidence intervals (CI), and AUC-ROC values with 95% CI are included. Results using AHV 
are included for benchmarking. Significant results from group comparisons are denoted by * to indicate p<0.05, ** to 
indicate p<0.01, and *** to indicate p<0.001, Holm-Bonferroni corrected.  
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Figure 3. Overlaid AUC-ROC curves 
visualizing baseline classification 
performance of AD-NeuroScore and AHV 
across the 3 diagnostic group comparisons.  

Figure 4. Violin plots depicting the distribution of AD-
NeuroScore and AHV for each diagnostic group at 
baseline. 
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3.1.2. Baseline Association with Disease Severity (MMSE, ADAS-11, and CDR-SB) 

 In the overall baseline experimental cohort, we found that AD-NeuroScore was 

significantly associated with disease severity, as measured by MMSE, ADAS-11, and CDR-SB 

scores (Table 4; Figure 5; all p-values < 0.001, Holm-Bonferroni corrected). In sub-analyses 

stratified by baseline diagnosis, we found significant associations between AD-NeuroScore and 

metrics of disease severity in participants with MCI (MMSE, ADAS-11, and CDR-SB) and AD 

(ADAS-11, and CDR-SB).  Conversely, we found no significant association with disease severity 

in CN individuals.  

 

 

 

 

 

 

 

 

 

 

Figure 5. Correlations between each metric – AD-NeuroScore and 
AHV, with CDR-SB, MMSE, and ADAS-11 at baseline. 
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Class Time Metric r n 
CDR-SB MMSE ADAS-11 CDR-SB MMSE ADAS-11 

All 

Baseline AD-NeuroScore 0.52*** -0.34*** 0.53*** 926 926 926 
AHV -0.43*** 0.28*** -0.47*** 926 926 926 

12  AD-NeuroScore -0.27*** 0.21*** -0.23*** 525 697 721 
AHV 0.23*** -0.16*** 0.19*** 525 697 721 

24 AD-NeuroScore -0.40*** 0.27*** -0.39*** 402 614 626 
AHV 0.32*** -0.19*** 0.26*** 402 614 626 

36 AD-NeuroScore -0.38*** 0.21*** -0.31*** 285 332 345 
AHV 0.34*** -0.17** 0.26*** 285 332 345 

48 AD-NeuroScore -0.42*** 0.26*** -0.31*** 205 369 375 
AHV 0.35*** -0.19*** 0.26*** 205 369 375 

CN 

Baseline AD-NeuroScore -0.08 -0.01 0.10 286 286 286 
AHV 0.00 -0.01 -0.17 286 286 286 

12 AD-NeuroScore -0.81* -0.02 0.09 13 183 180 
AHV 0.53 -0.03 0.01 13 183 180 

24 AD-NeuroScore -0.69* 0.02 -0.09 17 220 221 
AHV 0.45 -0.08 0.05 17 220 221 

36 AD-NeuroScore - -0.06 0.01 1 44 36 
AHV - -0.19 0.03 1 44 36 

48 AD-NeuroScore -0.12 0.00 0.01 5 126 133 
AHV 0.52 -0.21 -0.01 5 126 133 

MCI 

Baseline AD-NeuroScore 0.23*** -0.09* 0.33*** 511 511 511 
AHV -0.22*** 0.11* -0.35*** 511 511 511 

12 AD-NeuroScore -0.30*** 0.21*** -0.19*** 418 423 452 
AHV 0.23*** -0.13* 0.17** 418 423 452 

24 AD-NeuroScore -0.39*** 0.28*** -0.34*** 357 357 377 
AHV 0.32*** -0.15* 0.25*** 357 357 377 

36 AD-NeuroScore -0.38*** 0.24*** -0.31*** 284 273 309 
AHV 0.35*** -0.16* 0.27*** 284 273 309 

48 AD-NeuroScore -0.42*** 0.30*** -0.31*** 199 226 242 
AHV 0.35*** -0.19* 0.28*** 199 226 242 

AD 

Baseline AD-NeuroScore 0.27* -0.17 0.33** 129 129 129 
AHV -0.08 0.08 -0.14 129 129 129 

12 AD-NeuroScore 0.09 0.04 0.00 94 91 89 
AHV -0.08 -0.03 -0.22 94 91 89 

24 AD-NeuroScore 0.03 0.16 -0.36 28 37 28 
AHV -0.34 -0.10 -0.20 28 37 28 

36 AD-NeuroScore - -0.13 - 0 15 0 
AHV - -0.09 - 0 15 0 

48 AD-NeuroScore - 0.28 - 1 17 0 
AHV - -0.11 - 1 17 0 

Table 4. Relationship Between AD-NeuroScore and Disease Severity. Baseline rows include results from 
cross-sectional analysis of AD-NeuroScore and disease severity, operationalized as MMSE, ADAS-11, and 
CDR-SB scores. All other rows include results from longitudinal analysis of baseline AD-NeuroScore and 
change in disease severity scores at 12, 24, 36, and 48 months. Testing was performed with linear regression 
in the overall experimental cohort and in each diagnostic sub-group. Performance of AHV is included for 
benchmarking. Significant associations are indicated by * for p<0.05, ** for p<0.01, and *** for p<0.001, 
Holm-Bonferroni corrected.  
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AD-NeuroScore generally performed as well or better than our benchmark, AHV, in this 

cross-sectional validation using the overall baseline experimental cohort (Table 4; Figure 5). 

Results from z-tests conducted using Fisher z-transformed correlation coefficients revealed that 

associations between both CDR-SB and ADAS-11 and AD-NeuroScore were significantly 

stronger than with AHV (p=0.006 for CDR-SB and p=0.024 for ADAS-11). Sub-analyses 

stratified by baseline diagnosis revealed that AD-NeuroScore and AHV performed the most 

similarly in participants with MCI, and the most differently in participants with AD (AD-

NeuroScore: p<0.01 for ADAS-11 and p<0.05 for CDR-SB, both Holm-Bonferroni corrected, 

AHV: NS for all).  

3.2. Longitudinal Validation  

3.2.1. Metric Sensitivity to Progression  

In the overall baseline experimental cohort, we found that baseline AD-NeuroScore 

differentiated Diagnosisstable from Diagnosisdecline significantly at all timepoints (12, 24, 36, and 48-

months; Table 5; p<0.001, Holm-Bonferroni corrected, for all). Sub-analyses stratified by baseline 

diagnosis revealed that AD-NeuroScore’s ability to predict decline was primarily driven by 

individuals with MCI at baseline (p< 0.001, Holm-Bonferroni corrected, for all). We found no 

significant effects in CN individuals.  

We found that AD-NeuroScore performed as well as AHV in the overall experimental 

cohort (AHV: p<0.01 at 12-months, p<0.001 at all successive sessions, Holm-Bonferroni 

corrected). While there were no significant differences between AD-NeuroScore and AHV, 

qualitatively, AD-NeuroScore tended to do modestly better than AHV at differentiating 

Diagnosisstable, from Diagnosisdecline participants at 12- and 24-months, and slightly worse at 36- and 
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48-months. Sub-analysis by baseline diagnosis revealed similar patterns; AD-NeuroScore 

performed equivalently to AHV in individuals with MCI. However, AHV demonstrated somewhat 

higher sensitivity to change in diagnosis in the CN group.  

 

 

Comparison  time Metric AUC [95% CI] Cohen's d [95% CI] z-score  
 

St
ab

le
 v

s.
 D

ec
lin

e 
 

All 

12 months ADNS 0.67 [0.53, 0.80] 0.64 [0.35, 0.93]***  -4.35  

 AHV  0.65 [0.50, 0.80]  -0.53 [-0.81, -0.24]** -3.57  

24 months ADNS 0.71 [0.59, 0.82] 0.84 [0.61, 1.08]*** -7.00  

 AHV 0.71 [0.61, 0.82]  -0.79 [-1.02, -0.55]*** -6.58  

36 months ADNS 0.69 [0.53, 0.85]  0.72 [0.46, 0.98]*** -5.42  

 AHV 0.72 [0.60, 0.85]  -0.79 [-1.05, -0.52]*** -5.88  

48 months ADNS 0.67 [0.52, 0.83] 0.74 [0.47, 1.01]***  -5.36  

   AHV 0.72 [0.62, 0.83] -0.79 [-1.06, -0.51]*** -5.66  

CN 

12 months ADNS 0.35 [0.08, 0.62]  -0.06 [-0.70, 0.59] -0.17  

 AHV 0.72 [0.35, 1.09] -0.59 [-1.23, 0.06] -1.79  

24 months ADNS 0.64 [0.41, 0.88] 0.55 [0.08, 1.01] -2.32  

 AHV 0.74 [0.53, 0.95] -0.79 [-1.26, -0.33]** -3.34  

36 months ADNS 0.59 [0.21, 0.97] 0.34 [-0.36, 1.05] -0.98  

 AHV 0.78 [0.46, 1.09] -0.84 [-1.57, -0.11] -2.30  

48 months ADNS 0.44 [0.14, 0.75] 0.11 [-0.44, 0.65] -0.39  

   AHV 0.72 [0.46, 0.98] -0.65 [-1.20, -0.10] -2.34  

MCI 

12 months ADNS 0.77 [0.65, 0.90] 1.08 [0.75, 1.42]*** -6.39  

 AHV 0.68 [0.51, 0.85] -0.69 [-1.02, -0.36]*** -4.14  

24 months ADNS 0.76 [0.64, 0.88] 1.05 [0.77, 1.34]*** -7.36  

 AHV 0.73 [0.59, 0.86] -0.85 [-1.12, -0.57]*** -5.99  

36 months ADNS 0.73 [0.62, 0.84] 0.87 [0.59, 1.16]*** -5.99  

 AHV 0.73 [0.56, 0.90] -0.86 [-1.14, -0.57]*** -5.87  

48 months ADNS 0.73 [0.57, 0.89] 0.78 [0.46, 1.10]*** -4.83  

   AHV 0.69 [0.51, 0.88] -0.76 [-1.08, -0.44]*** -4.71  

Table 5. Relationship Between AD-NeuroScore and Longitudinal Diagnosis Transitions. Sensitivity to diagnostic 
transition category assessed using pairwise, two-tailed t-tests performed between groups with a stable or declining 
diagnosis from baseline, at each respective time point. Resulting z-scores, effect sizes (Cohen’s d) with 95% confidence 
intervals (CI)s, and AUC-ROC values with 95% CIs are included. Performance was evaluated both in the overall 
experimental cohort and in sub-groups based on starting diagnosis (CN or MCI). Results using AHV are included for 
benchmarking. Significant results from group comparisons are denoted by * to indicate p<0.05, ** to indicate p<0.01, 
and *** to indicate p<0.001, Holm-Bonferroni corrected.  
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3.2.2. Longitudinal Association with Disease Severity (MMSE, ADAS-11, and CDR-SB) 

In the overall longitudinal cohort, we found that baseline AD-NeuroScore was also 

significantly associated with the change in disease severity scores (Table 4; p <0.001, Holm-

Bonferroni corrected, for all), as measured by the change in MMSE, ADAS-11, and CDR-SB 

scores from baseline to each time point (12, 24, 36, and 48-months). Sub-analysis by baseline 

diagnosis revealed that AD-NeuroScore’s association with the change in disease severity scores 

was also primarily driven by individuals with MCI at baseline. We found significant associations 

between AD-NeuroScore and the change in MMSE, ADAS-11, and CDR-SB scores in participants 

with MCI at all time points (p<0.001, Holm-Bonferroni corrected for all). Conversely, we found 

no significant association with the change in disease severity in AD individuals, and only two 

significant associations in CN individuals (CDR-SB at 12- and 24- months; p<0.05, Holm-

Bonferroni corrected, for both).  

AD-NeuroScore generally performed as well or better than our benchmark, AHV, in this 

longitudinal validation (Table 4). As with AD-NeuroScore, correlations between AHV at baseline 

and change in disease severity scores were significant in the overall longitudinal cohort (Table 4; 

p<0.001, Holm-Bonferroni corrected, for all timepoints). Results from z-tests conducted using 

Fisher z-transformed correlation coefficients revealed that correlations between AD-NeuroScore 

and 24-month change in ADAS-11 were significantly stronger than with AHV (p=0.003, Holm-

Bonferroni corrected). In the MCI group,  AD-NeuroScore performed as well or somewhat better 

than AHV (AD-NeuroScore: p<0.001 for all; AHV: p<0.05 for MMSE across all time points, 

p<0.01 for ADAS-11 at 12-months, and p<0.001 for all other scores and time points, all Holm-

Bonferroni corrected).  
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 In the AD group, neither AD-NeuroScore nor AHV were significantly associated with 

change in disease severity scores.  The AD sub-analysis was limited by sample size longitudinally. 

In the CN group, both AD-NeuroScore and AHV had generally weak correlations, none of which 

were significant aside from AD-NeuroScore and CDR-SB at 12- and 24-months (both p<0.05, 

Holm-Bonferroni corrected). 

3.3. Alternative Atlas Analysis 
 

3.3.1 Baseline and Longitudinal Validation  

 Results from analyses repeated using the Neuroreader® ROI-based AD-NeuroScore were 

similar to those obtained with the Freesurfer-based AD-NeuroScore, including all cross-sectional 

and longitudinal analyses. Benchmarking the pseudo-Neuroreader® ROI-based AD-NeuroScore 

against AHV also produced results analogous to those of the original analysis (Supplementary 

Tables S5-S7). 

 

4. Discussion  

We developed a Euclidean inspired sMRI-based distance metric, AD-NeuroScore, which 

was significantly associated with diagnosis (CN, MCI, and AD) and disease severity (MMSE, 

ADAS-11 and CDR-SB scores) at baseline. AD-NeuroScore performed as well as AHV, the 

most commonly used sMRI measure of AD-related neurodegeneration, and demonstrated 

comparably strong correlations with disease severity scores. AD-NeuroScore was also 

significantly associated with changes in the three disease severity scores over a relatively long 

follow-up period of 48 months. We found that these associations were largely driven by the 
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MCI group. It is possible that the limited sample size of CN participants and patients with AD 

with longitudinal scores available resulted in the CN and AD sub-analyses being underpowered 

to detect a relationship.  

Moreover, AD-NeuroScore was also able to differentiate between participants who 

declined in cognitive status (from CN to MCI or AD; from MCI to AD) and those who 

remained stable in longitudinal analyses; this was also true of AHV. Qualitatively, AD-

NeuroScore tended to perform modestly better than AHV at earlier time points (12- and 24-

months) and slightly worse at later sessions (36- and 48-months). Stratifying this analysis by 

starting diagnosis revealed that the MCI patient population was primarily driving these results 

as well. This finding was likely the result of two major factors: the combined sample of stable 

and declining patients at each time point was always much larger for the patients with a 

baseline MCI diagnosis and the greatest and most consistent changes in neuropsychological 

scale scores across sessions would be expected to occur in the MCI sub-population. Because 

patients more frequently seek monitoring and intervention after the onset of cognitive deficits 

(i.e., with MCI) rather than prior (i.e., CN), the strength of our metric in this patient population 

is of importance. Similarly, in clinical trials aimed at assessing the efficacy of interventions in 

slowing AD progression, a measure that is optimally sensitive in patients with MCI is 

particularly well-suited for usage.  

A particularly attractive feature of AD-NeuroScore is the ease with which it could be 

integrated into current clinical and research workflows. One of the challenges in the full clinical 

implementation of AI applications is the difficulty integrating these into daily workflows 

(Hwang and Park, 2020). Adding AD-NeuroScore to existing, clinically implemented regional 

brain volume reports, and calculating AD-NeuroScore based on the individual regional volumes 
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obtained in research settings would be straight-forward. Further, by replacing different 

anatomical ROIs with a single measure as an endpoint, AD-NeuroScore could enhance the 

sensitivity of many studies by reducing the number of statistical tests, while meaningfully 

encapsulating as much or more information. Future directions of this work include creating 

validated AD-NeuroScore norms and diagnostic cutoffs to aid in integration with clinical 

workflows.   

An unexpected result of the present study, inconsistent with previous literature, is that 

both the left and right lateral ventricular volumes were not retained during ROI selection, despite 

the frequent observation of ventricular dilation in patients with AD (Attier-Zmudka et al., 2019; 

Ott et al., 2010). Absolute ventricular enlargement has proven sufficient to discriminate between 

MCI patients who progressed to AD or remained stable over a 6-month interval in a smaller 

ADNI cohort (n=504) and, consequently, has been proposed as a potential biomarker for disease 

progression (Sean M. Nestor et al., 2008). However, at baseline, in line with previous cross-

sectional volumetric studies, a large overlap was found between the total ventricular volumes of 

pathological groups and controls (Giesel et al., n.d.; Sean M. Nestor et al., 2008; Schott et al., 

2005). Thus, one potential explanation may be that absolute ventricular change is a more 

sensitive measure of AD-pathology than total ventricular volume. Given that our investigation 

only examined regional volumes at cross-section and employed a conservative correction to 

adjust for the 84 brain regions tested during ROI selection, this discrepancy may be plausibly 

attributed to differences in study design.  

It is also important to address the distinctions between AD-NeuroScore and other 

biomarkers that have been developed and studied in the literature. Many of the ML-based 
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metrics successfully classify participants as AD or not, using similar input features (perhaps from 

different data sets) and slightly different ML algorithms. The STructural Abnormality iNDex 

(STAND)-score uses a support vector machine classifier which takes in sMRI normalized input 

features such as GM, WM, and CSF tissue densities extracted from SPM5 tissue segmentation as 

well as demographic information and assigns a numerical value to classify a patient as CN or AD 

based on a 280 sample (140 each) training set from the Alzheimer's disease Patient Registry 

(Vemuri et al., 2009b, n.d.). AD Pattern Similarity (AD-PS) uses the same sMRI input features 

(GM, WM, and CSF tissue maps) derived from the ADNI data set (Casanova et al., 2013) and 

high dimensional regularized logistic regression to classify a patient as CN or AD. AD-PS and 

AD-NeuroScore perform similarly (with significantly overlapping AUC-ROC confidence 

intervals); while AD-PS was also shown to correlate negatively with cognitive scores obtained 

through clinic visits and telephone interviews, lack of details regarding the correlations makes 

direct comparison with AD-NeuroScore difficult. Another ML-based metric, Subtype and Stage 

Inference (SuStaIn) (Young et al., 2014), primarily subtypes individuals based on their 

likelihood to stabilize or decline (Fonteijn et al., 2012) and excels at differentiating AD from CN. 

AD-NeuroScore performs at least as well as SuStaIn at subtyping MCI patients (AUC=0.72 for 

SuStaIn; AUC=0.77 for AD-NeuroScore) (Archetti et al., 2021). SuStaIn utilizes multi-modal 

sporadic disease data rather than a single data source, making it more complicated than AD-

NeuroScore to integrate into clinical workflows, potentially a barrier to full clinical 

implementation.  

Amongst the more interpretable ML models, MRDATS and SPARE-AD (Davatzikos et 

al., 2009; Popuri et al., 2020b) deserve mention. MRDATS uses w-corrected brain ROI volumes 

in an ensemble-learning algorithm to arrive at a score between 0 and 1 to indicate CN to 
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dementia progression (Popuri et al., 2020b). Using a threshold of 0.5, MRDATS performed well 

at binary classification of CN and dementia, however this was assessed only in the training set. 

As with SuStaIn, MRDATS was developed primarily to differentiate stable from declining 

patients. MRDATS performed equivalently to AD-NeuroScore in distinguishing stable and 

progressive MCI groups (0–3-year AUC=0.75 for MRDATS and AUC=0.75 for AD-

NeuroScore). The SPARE-AD (Davatzikos et al., 2009) index uses high-dimensional pattern 

classification of volumetric atrophy and rate of change of SPARE-AD was highly predictive of 

cognitive status. A future direction of this work is to determine if utilizing rate of change of AD-

NeuroScore (versus a single time point) improves its performance. Compared to MRDATS and 

SPARE-AD, AD-NeuroScore can be calculated in a computationally simple way using FDA-

approved, clinically implemented, automated ROI-metrics such as Neuroreader®.   

The most similar metric to AD-NeuroScore is RVI or the ENIGMA Dot Product 

(Kochunov et al., 2022), which also uses the concept of weighing a multivariate sum by a metric 

describing the effect of a group status with harmonized phenotypes and performs well as a 

biomarker in several neuropsychiatric conditions. There are many notable differences between 

RVI and AD-NeuroScore, the first of which pertains to the phenotypes used within the metric. 

AD-NeuroScore exclusively uses regional volumes while RVI uses several brain-derived metrics 

including gray matter thicknesses and fractional anisotropy values, which are not presently part 

of popular clinical workflows. Moreover, AD-NeuroScore retains both hemispheric volumes 

compared to RVI’s averaging of the hemispheres. AD-NeuroScore additionally harmonizes with 

respect to scanner model, improving its utility in multi-scanner circumstances, which are 

common in large cohort data sets and in clinical practice. 
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Most of the important differences arise in the construction of AD-NeuroScore.  The core 

concept of the metric is the Euclidean distance, where each harmonized volume is subtracted 

from the corresponding normal template harmonized volume. Unlike RVI, it does not take the 

absolute value of the transformed residual after harmonization. For this reason, each multivariate 

term in the sum is squared to account for possible cancellations of differences and to emphasize 

differences that are greater while minimizing smaller ones. Moreover, AD-NeuroScore quantifies 

the difference between groups, weighs each term in the sum with a z-score rather than effect size 

and does not normalize by the number of terms. These differences could explain why AD-

NeuroScore better distinguishes CN and AD groups from the ADNI database than RVI, with 

statistically significant differences in their Cohen’s d values (p<0.001) (Kochunov et al., 2021). 

An important advantage of AD-NeuroScore is its potential to accurately monitor disease 

advancement and be compared across multiple sites by using standard ranges to generate 

probabilities of diagnosis or decline. Similarly, ranges of AD-NeuroScore that are standard for 

different groups could be used to aid early differential diagnosis of common neurodegenerative 

diseases that cause dementia, such as vascular dementia, dementia with Lewy bodies, and 

frontotemporal dementia, which demonstrate unique patterns of atrophy that may be difficult to 

assess by AHV and other standard approaches. In support of exploring this functionality further 

is previous literature which has found that sMRI alone can be used to differentiate between these 

four dementia-causing neurodegenerative diseases groups and healthy controls with a high 

accuracy (Koikkalainen et al., 2016). A future direction of this research is to determine if AD-

NeuroScore can aid in the differential diagnosis of dementia. 

While the findings of this work encourage further investigation, there are several 

limitations that should be carefully considered and addressed in successive studies. First, the 
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sample of patients with AD was much smaller than the CN and MCI cohorts across all sessions, 

with this number falling across successive visits. The limited number of participants across all 

diagnostic groups with scores available on the MMSE, CDR-SB, and ADAS-11 also dwindled 

longitudinally, rendering some of the later tests for the CN and AD groups particularly 

underpowered. Additionally, the AD subset was confined to patients with mild AD dementia, as 

defined in the ADNI protocol, which leaves more progressed patients with AD understudied with 

regards to our metric. Repeating this study in a real-world clinical sample that better represents 

the AD patient class at various stages of disease advancement would solidify the findings 

presented in this study.  
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Group Comparison Metric AUC [95% CI] Cohen's d [95% CI] z-score  

CN vs MCI 

ADNS 0.66 [0.59, 0.73] -0.56 [-0.59, -0.53]*** -7.46 

Euclidean 0.64 [0.55, 0.73] -0.47 [-0.50, -0.44]*** -6.31 

1-D Fréchet 0.65 [0.57, 0.73] -0.49 [-0.52, -0.46]*** -6.57 

N-D Fréchet 0.58 [0.49, 0.66] -0.33 [-0.35, -0.30]*** -4.41 

1-D Hausdorff 0.63 [0.55, 0.71] -0.49 [-0.52, -0.46]*** -6.57 
N-D Hausdorff 0.56 [0.49, 0.63] -0.22 [-0.24, -0.19]** -2.95 

AHV 0.65 [0.58, 0.72] 0.55 [0.52, 0.58]*** -7.27 

CN vs AD 

ADNS 0.91 [0.86, 0.96] -2.06 [-2.24, -1.88]*** -16.37 
Euclidean 0.85 [0.78, 0.92] -1.44 [-1.60, -1.28]*** -12.32 

1-D Fréchet 0.85 [0.78, 0.93] -1.57 [-1.73, -1.40]*** -13.23 
N-D Fréchet 0.80 [0.71, 0.88] -1.28 [-1.44, -1.12]*** -11.18 

1-D Hausdorff 0.86 [0.79, 0.93] -1.57 [-1.73, -1.40]*** -13.23 
N-D Hausdorff 0.73 [0.62, 0.84] -0.93 [-1.08, -0.78]*** -8.40 

AHV 0.88 [0.81, 0.95] 1.72 [1.55, 1.89]*** -14.27 

MCI vs AD 

ADNS 0.80 [0.71, 0.89] -1.16 [-1.19, -1.14]*** -11.23 

Euclidean 0.74 [0.64, 0.85] -1.02 [-1.05, -1.00]*** -9.98 

1-D Fréchet 0.74 [0.64, 0.84] -1.02 [-1.05, -1.00]*** -9.99 

N-D Fréchet 0.73 [0.63, 0.83] -0.85 [-0.87, -0.83]*** -8.41 

1-D Hausdorff 0.74 [0.63, 0.84] -1.02 [-1.05, -1.00]*** -9.99 

N-D Hausdorff 0.64 [0.53, 0.75] -0.68 [-0.71, -0.66]*** -6.82 

AHV 0.76 [0.67, 0.84] 0.92 [0.90, 0.94]*** -9.04 

Supplemental Table 1. Baseline Assessment of all Distance Metrics based on Sensitivity to Diagnosis. Assessment of all 
distance metrics, benchmarked against AHV, based on metric sensitivity to diagnosis at baseline, operationalized as 
pairwise, two-tailed t-tests performed for each possible diagnostic group comparison, z-scores, effect sizes (Cohen’s d) with 
95% CIs, and AUC values with 95% CIs. AD-NeuroScore (ADNS) is used to refer to the Z-Weighted Euclidean (ZWE) 
distance function. The Fréchet and Hausdorff distance functions were found to be the same in one dimension. Significant 
group comparisons are denoted by * to indicate p<0.05, ** to indicate p<0.01, and *** to indicate p<0.001. 
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Class t Metric 
r n 

CDR-SB MMSE ADAS-11 CDR-SB MMSE ADAS-11 

All 

Baseline 

ADNS 0.52*** -0.34*** 0.53*** 926 926 926 

Euclidean 0.47*** -0.32*** 0.49*** 926 926 926 

1-D Fréchet 0.47*** -0.31*** 0.49*** 926 926 926 

N-D Fréchet 0.39*** -0.26*** 0.42*** 926 926 926 

1-D Hausdorff 0.47*** -0.31*** 0.49*** 926 926 926 

N-D Hausdorff 0.33*** -0.22*** 0.33*** 926 926 926 

AHV -0.43*** 0.28*** -0.47*** 926 926 926 

12 

ADNS -0.27*** 0.21*** -0.23*** 525 697 721 

Euclidean -0.23*** 0.22*** -0.20*** 525 697 721 

1-D Fréchet -0.24*** 0.22*** -0.20*** 525 697 721 

N-D Fréchet -0.21*** 0.16*** -0.19*** 525 697 721 

1-D Hausdorff -0.24*** 0.22*** -0.20*** 525 697 721 

N-D Hausdorff -0.15*** 0.08* -0.12** 525 697 721 

AHV 0.23*** -0.16*** 0.19*** 525 697 721 

24 

ADNS -0.40*** 0.27*** -0.39*** 402 614 626 

Euclidean -0.34*** 0.24*** -0.39*** 402 614 626 

1-D Fréchet -0.34*** 0.24*** -0.36*** 402 614 626 

N-D Fréchet -0.29*** 0.19*** -0.29*** 402 614 626 

1-D Hausdorff -0.34*** 0.24*** -0.36*** 402 614 626 

N-D Hausdorff -0.22*** 0.13** -0.23*** 402 614 626 

AHV 0.32*** -0.19*** 0.26*** 402 614 626 

36 

ADNS -0.38*** 0.21*** -0.31*** 285 332 345 
Euclidean -0.33*** 0.18** -0.25*** 285 332 345 

1-D Fréchet -0.33*** 0.18** -0.26*** 285 332 345 
N-D Fréchet -0.25*** 0.11* -0.17** 285 332 345 

1-D Hausdorff -0.33*** 0.18** -0.26*** 285 332 345 
N-D Hausdorff -0.19** 0.08 -0.10 285 332 345 

AHV 0.34*** -0.17** 0.26*** 285 332 345 
  

48 

ADNS -0.42*** 0.26*** -0.31*** 205 369 375 

  Euclidean -0.39*** 0.20*** -0.25*** 205 369 375 

  1-D Fréchet -0.37*** 0.20*** -0.24*** 205 369 375 

  N-D Fréchet -0.33*** 0.15** -0.18*** 205 369 375 

  1-D Hausdorff -0.37*** 0.20*** -0.24*** 205 369 375 

Supplemental Table 2. Linear Regression Results All Distance Metrics. Assessment of all distance metrics, benchmarked 
against AHV, on the basis of metric association with disease severity, operationalized as MMSE, ADAS-11, and CDR-SB 
scores at baseline or their change from baseline at each time point, tested with linear regression in the overall experimental 
cohort and in each diagnostic sub-group. ADNS is used here to refer to the Z-Weighted Euclidean (ZWE) distance function. 
The Fréchet and Hausdorff distance functions were found to be the same in one dimension. Significant group comparisons are 
denoted by * to indicate p<0.05, ** to indicate p<0.01, and *** to indicate p<0.001. 
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  N-D Hausdorff -0.27*** 0.10 -0.13* 205 369 375 

  AHV 0.35*** -0.19*** 0.26*** 205 369 375 

CN 

Baseline 

ADNS -0.08 -0.01 0.10 286 286 286 
Euclidean -0.08 0.00 0.11 286 286 286 

1-D Fréchet -0.09 0.01 0.10 286 286 286 
N-D Fréchet -0.03 -0.05 0.11 286 286 286 

1-D Hausdorff -0.09 0.01 0.1 286 286 286 
N-D Hausdorff 0.01 -0.11 0.11 286 286 286 

AHV 0.00 -0.01 -0.17** 286 286 286 

12 

ADNS -0.81*** -0.02 0.09 13 183 180 

Euclidean -0.86*** -0.01 0.05 13 183 180 

1-D Fréchet -0.82*** 0.00 0.04 13 183 180 

N-D Fréchet -0.60* 0.00 0.01 13 183 180 

1-D Hausdorff -0.82*** 0.00 0.04 13 183 180 

N-D Hausdorff -0.53 0.02 -0.05 13 183 180 

AHV 0.53 -0.03 0.01 13 183 180 

24 

ADNS -0.69** 0.02 -0.09 17 220 221 

Euclidean -0.79*** 0.12 -0.06 17 220 221 

1-D Fréchet -0.74*** 0.14* -0.07 17 220 221 

N-D Fréchet -0.62** 0.14* -0.11 17 220 221 

1-D Hausdorff -0.74*** 0.14* -0.07 17 220 221 

N-D Hausdorff -0.49* 0.10 -0.11 17 220 221 

AHV 0.45 -0.08 0.05 17 220 221 

36 

ADNS - -0.06 0.01 1 44 36 

Euclidean - -0.09 -0.06 1 44 36 

1-D Fréchet - -0.08 -0.08 1 44 36 

N-D Fréchet - -0.08 -0.17 1 44 36 

1-D Hausdorff - -0.08 -0.08 1 44 36 

N-D Hausdorff - 0.12 0.05 1 44 36 

AHV - -0.19 0.03 1 44 36 

48 

ADNS -0.12 0.00 0.01 5 126 133 

Euclidean 0.03 0.00 0.07 5 126 133 

1-D Fréchet 0.02 0.02 0.06 5 126 133 

N-D Fréchet -0.28 0.03 0.02 5 126 133 

1-D Hausdorff 0.02 0.02 0.06 5 126 133 

N-D Hausdorff 0.29 0.04 -0.13 5 126 133 

AHV 0.52 -0.21* -0.01 5 126 133 

MCI Baseline 
ADNS 0.23*** -0.09* 0.33*** 511 511 511 

Euclidean 0.20*** -0.08 0.28*** 511 511 511 
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1-D Fréchet 0.21*** -0.09* 0.28*** 511 511 511 

N-D Fréchet 0.16*** -0.08 0.24*** 511 511 511 

1-D Hausdorff 0.21*** -0.09* 0.28*** 511 511 511 

N-D Hausdorff 0.18*** -0.09* 0.18*** 511 511 511 

AHV -0.22*** 0.11* -0.35*** 511 511 511 

12 

ADNS -0.30*** 0.21*** -0.19*** 418 423 452 

Euclidean -0.27*** 0.21*** -0.16*** 418 423 452 

1-D Fréchet -0.26*** 0.20*** -0.15** 418 423 452 

N-D Fréchet -0.20*** 0.16** -0.14** 418 423 452 

1-D Hausdorff -0.26*** 0.20*** -0.15** 418 423 452 

N-D Hausdorff -0.13** 0.06 -0.06 418 423 452 

AHV 0.23*** -0.13** 0.17*** 418 423 452 

24 

ADNS -0.39*** 0.28*** -0.34*** 357 357 377 

Euclidean -0.32*** 0.20*** -0.31*** 357 357 377 

1-D Fréchet -0.31*** 0.20*** -0.31*** 357 357 377 

N-D Fréchet -0.27*** 0.18*** -0.26*** 357 357 377 

1-D Hausdorff -0.31*** 0.20*** -0.31*** 357 357 377 

N-D Hausdorff -0.19*** 0.14** -0.20*** 357 357 377 

AHV 0.32*** -0.15** 0.25*** 357 357 377 

36 

ADNS -0.38*** 0.24*** -0.31*** 284 273 309 

Euclidean -0.33*** 0.21*** -0.25*** 284 273 309 

1-D Fréchet -0.33*** 0.22*** -0.25*** 284 273 309 

N-D Fréchet -0.25*** 0.15* -0.16** 284 273 309 

1-D Hausdorff -0.33*** 0.22*** -0.25*** 284 273 309 

N-D Hausdorff -0.19** 0.09 -0.10 284 273 309 

AHV 0.35*** -0.16** 0.27*** 284 273 309 

48 

ADNS -0.42*** 0.30*** -0.31*** 199 226 242 

Euclidean -0.39*** 0.22** -0.25*** 199 226 242 

1-D Fréchet -0.37*** 0.22*** -0.24*** 199 226 242 

N-D Fréchet -0.32*** 0.16* -0.18** 199 226 242 

1-D Hausdorff -0.37*** 0.22*** -0.24*** 199 226 242 

N-D Hausdorff -0.27*** 0.10 -0.12 199 226 242 

AHV 0.35*** -0.19** 0.28*** 199 226 242 

AD Baseline 

ADNS 0.27** -0.17 0.33*** 129 129 129 

Euclidean 0.26** -0.19* 0.35*** 129 129 129 

1-D Fréchet 0.27** -0.18* 0.37*** 129 129 129 

N-D Fréchet 0.28** -0.12 0.34*** 129 129 129 

1-D Hausdorff 0.27** -0.18* 0.37*** 129 129 129 

N-D Hausdorff 0.23* -0.06 0.23** 129 129 129 
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AHV -0.08 0.08 -0.14 129 129 129 

12 

ADNS 0.09 0.04 0.00 94 91 89 

Euclidean 0.04 0.13 -0.03 94 91 89 

1-D Fréchet 0.02 0.15 -0.05 94 91 89 

N-D Fréchet 0.01 0.01 -0.06 94 91 89 

1-D Hausdorff 0.02 0.15 -0.05 94 91 89 

N-D Hausdorff 0.02 -0.01 0.00 94 91 89 

AHV -0.08 -0.03 -0.22* 94 91 89 

24 

ADNS 0.03 0.16 -0.36 28 37 28 

Euclidean -0.14 0.29 -0.53** 28 37 28 

1-D Fréchet -0.11 0.22 -0.49** 28 37 28 

N-D Fréchet -0.17 0.01 -0.36 28 37 28 

1-D Hausdorff -0.11 0.22 -0.49** 28 37 28 

N-D Hausdorff -0.17 -0.15 -0.34 28 37 28 

AHV -0.34 -0.10 -0.20 28 37 28 

36 

ADNS - -0.13 - 0 15 0 

Euclidean - -0.22 - 0 15 0 

1-D Fréchet - -0.28 - 0 15 0 

N-D Fréchet - -0.48 - 0 15 0 

1-D Hausdorff - -0.28 - 0 15 0 

N-D Hausdorff - -0.34 - 0 15 0 

AHV - -0.09 - 0 15 0 

48 

ADNS - 0.28 - 1 17 0 

Euclidean - -0.01 - 1 17 0 

1-D Fréchet - 0.03 - 1 17 0 

N-D Fréchet - -0.07 - 1 17 0 

1-D Hausdorff - 0.03 - 1 17 0 

N-D Hausdorff - -0.10 - 1 17 0 

AHV - -0.11 - 1 17 0 
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Comparison  t Metric AUC [95% CI] Cohen's d [95% CI] z-score  
 

St
ab

le
 v

s D
ec

lin
e 

All 

12 

ADNS 0.67 [0.53, 0.80] 0.64 [0.35, 0.93]*** -4.35  

Euclidean 0.65 [0.51, 0.79] 0.52 [0.23, 0.81]*** -3.52  

1-D Fréchet 0.67 [0.49, 0.85] 0.56 [0.27, 0.85]*** -3.81  

N-D Fréchet 0.61 [0.42, 0.79] 0.46 [0.17, 0.75]** -3.15  

1-D Hausdorff 0.65 [0.50, 0.80]  0.56 [0.27, 0.85]*** -3.81  

N-D Hausdorff 0.62 [0.45, 0.78] 0.32 [0.03, 0.61]* -2.20  

AHV 0.65 [0.50, 0.80] -0.53 [-0.81, -0.24]*** -3.57  

24 

ADNS 0.71 [0.59, 0.82] 0.84 [0.61, 1.08]*** -7.00  

Euclidean 0.67 [0.53, 0.80] 0.66 [0.42, 0.89]*** -5.51  

1-D Fréchet 0.67 [0.55, 0.79] 0.69 [0.45, 0.92]*** -5.77  

N-D Fréchet 0.66 [0.54, 0.77] 0.65 [0.42, 0.89]*** -5.49  

1-D Hausdorff 0.67 [0.54, 0.80] 0.69 [0.45, 0.92]*** -5.77  

N-D Hausdorff 0.65 [0.49, 0.81] 0.65 [0.42, 0.88]*** -5.45  

AHV 0.71 [0.61, 0.82] -0.79 [-1.02, -0.55]*** -6.58  

36 

ADNS 0.69 [0.53, 0.85] 0.72 [0.46, 0.98]*** -5.42  

Euclidean 0.65 [0.51, 0.79] 0.56 [0.30, 0.82]*** -4.23  

1-D Fréchet 0.64 [0.52, 0.76] 0.57 [0.31, 0.83]*** -4.33  

N-D Fréchet 0.62 [0.47, 0.77] 0.43 [0.17, 0.68]** -3.24  

1-D Hausdorff 0.64 [0.52, 0.77] 0.57 [0.31, 0.83]*** -4.33  

N-D Hausdorff 0.62 [0.50, 0.74] 0.46 [0.20, 0.72]*** -3.51  

AHV 0.72 [0.60, 0.85] -0.79 [-1.05, -0.52]*** -5.88  

48 

ADNS 0.67 [0.52, 0.83] 0.74 [0.47, 1.01]*** -5.36  

Euclidean 0.60 [0.43, 0.77] 0.54 [0.27, 0.81]*** -3.92  

1-D Fréchet 0.60 [0.43, 0.77] 0.51 [0.24, 0.78]*** -3.71  

N-D Fréchet 0.60 [0.46, 0.73] 0.45 [0.18, 0.72]*** -3.30  

1-D Hausdorff 0.61 [0.47, 0.75] 0.51 [0.24, 0.78]*** -3.71  

N-D Hausdorff 0.56 [0.42, 0.71]  0.32 [0.05, 0.59]* -2.37  

AHV 0.72 [0.62, 0.83] -0.79 [-1.06, -0.51]*** -5.66  

CN 
12 

ADNS 0.35 [0.08, 0.62]  -0.06 [-0.70, 0.59] -0.17  

Euclidean 0.39 [0.15, 0.63] 0.05 [-0.59, 0.69] -0.16  

1-D Fréchet 0.45 [0.09, 0.80] 0.10 [-0.54, 0.74] -0.31  

N-D Fréchet 0.56 [0.17, 0.95] 0.45 [-0.20, 1.09] -1.37  

1-D Hausdorff 0.43 [0.14, 0.71]  0.10 [-0.54, 0.74] -0.31  

N-D Hausdorff 0.66 [0.27, 1.04] 0.54 [-0.11, 1.18] -1.64  

AHV 0.72 [0.35, 1.09]  -0.59 [-1.23, 0.06] -1.79  

24 ADNS 0.64 [0.41, 0.88] 0.55 [0.08, 1.01]* -2.32  

Supplemental Table 3. Longitudinal Assessment of all Distance Metrics based on Diagnosis Transitions. Assessment 
of all distance metrics, benchmarked against AHV, on the basis of metric ability to predict progression, operationalized as 
two-tailed t-tests performed for each DTC comparison, z-scores, effect sizes (Cohen’s d) with 95% CIs,  and AUC-ROC 
with 95% CIs. Evaluation was performed in the full experimental cohort and in sub-groups based on starting diagnosis. 
ADNS refers to the Z-Weighted Euclidean (ZWE) distance function. The Fréchet and Hausdorff distance functions were 
found to be the same in one dimension. Significant group comparisons are denoted by * to indicate p<0.05, ** to indicate 
p<0.01, and *** to indicate p<0.001. 
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Euclidean 0.66 [0.42, 0.89]  0.47 [0.00, 0.93]* -1.98  

1-D Fréchet 0.69 [0.49, 0.89] 0.51 [0.04, 0.97]* -2.15  

N-D Fréchet 0.75 [0.53, 0.96] 0.75 [0.28, 1.22]** -3.17  

1-D Hausdorff 0.63 [0.41, 0.85]  0.51 [0.04, 0.97]* -2.15  

N-D Hausdorff 0.65 [0.38, 0.93] 0.66 [0.19, 1.13]** -2.79  

AHV 0.74 [0.53, 0.95] -0.79 [-1.26, -0.33]*** -3.34  

36 

ADNS 0.59 [0.21, 0.97] 0.34 [-0.36, 1.05] -0.98  

Euclidean 0.44 [0.09, 0.80] 0.07 [-0.63, 0.77] -0.21  

1-D Fréchet 0.44 [0.07, 0.81] 0.13 [-0.57, 0.84] -0.38  

N-D Fréchet 0.60 [0.24, 0.97] 0.53 [-0.18, 1.24] -1.48  

1-D Hausdorff 0.43 [0.05, 0.82] 0.13 [-0.57, 0.84] -0.38  

N-D Hausdorff 0.70 [0.40, 1.00] 0.58 [-0.14, 1.29] -1.62  

AHV 0.78 [0.46, 1.09] -0.84 [-1.57, -0.11]* -2.30  

48 

ADNS 0.44 [0.14, 0.75] 0.11 [-0.44, 0.65] -0.39  

Euclidean 0.40 [0.15, 0.65] 0.04 [-0.50, 0.58] -0.15  

1-D Fréchet 0.40 [0.15, 0.64] 0.06 [-0.48, 0.60] -0.21  

N-D Fréchet 0.63 [0.34, 0.93] 0.36 [-0.18, 0.91] -1.32  

1-D Hausdorff 0.38 [0.10, 0.66] 0.06 [-0.48, 0.60] -0.21  

N-D Hausdorff 0.40 [0.16, 0.63] -0.04 [-0.58, 0.50] -0.14  

AHV 0.72 [0.46, 0.98] -0.65 [-1.20, -0.10]* -2.34  

MCI   

12 

ADNS 0.77 [0.65, 0.90]  1.08 [0.75, 1.42]*** -6.39  

Euclidean 0.73 [0.55, 0.90] 1.00 [0.67, 1.33]*** -5.90  

1-D Fréchet 0.73 [0.57, 0.89] 0.97 [0.64, 1.30]*** -5.73  

N-D Fréchet 0.67 [0.49, 0.84] 0.69 [0.36, 1.02]*** -4.13  

1-D Hausdorff 0.72 [0.55, 0.89] 0.97 [0.64, 1.30]*** -5.73  

N-D Hausdorff 0.64 [0.45, 0.83] 0.45 [0.12, 0.77]** -2.69  

AHV 0.68 [0.51, 0.85] -0.69 [-1.02, -0.36]*** -4.14  

24 

ADNS 0.76 [0.64, 0.88] 1.05 [0.77, 1.34]*** -7.36  

Euclidean 0.68 [0.53, 0.83] 0.84 [0.56, 1.12]*** -5.94  

1-D Fréchet 0.69 [0.55, 0.84] 0.82 [0.54, 1.09]*** -5.78  

N-D Fréchet 0.63 [0.47, 0.78] 0.65 [0.37, 0.92]*** -4.61  

1-D Hausdorff 0.70 [0.57, 0.83] 0.82 [0.54, 1.09]*** -5.78  

N-D Hausdorff 0.68 [0.53, 0.84] 0.66 [0.39, 0.94]*** -4.73  

AHV 0.73 [0.59, 0.86] -0.85 [-1.12, -0.57]*** -5.99  

36 

ADNS 0.73 [0.62, 0.84] 0.87 [0.59, 1.16]*** -5.99  

Euclidean 0.67 [0.50, 0.83] 0.68 [0.40, 0.97]*** -4.74  

1-D Fréchet 0.69 [0.54, 0.84] 0.70 [0.41, 0.98]*** -4.82  

N-D Fréchet 0.63 [0.46, 0.81] 0.44 [0.16, 0.72]** -3.06  

1-D Hausdorff 0.69 [0.54, 0.84] 0.70 [0.41, 0.98]*** -4.82  

N-D Hausdorff 0.63 [0.52, 0.73] 0.49 [0.21, 0.77]*** -3.41  

AHV 0.73 [0.56, 0.90] -0.86 [-1.14, -0.57]*** -5.87  

48 
ADNS 0.73 [0.57, 0.89] 0.78 [0.46, 1.10]*** -4.83  

Euclidean 0.62 [0.42, 0.82] 0.54 [0.23, 0.86]*** -3.41  

1-D Fréchet 0.59 [0.44, 0.75] 0.52 [0.21, 0.83]** -3.25  
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N-D Fréchet 0.57 [0.41, 0.74] 0.40 [0.09, 0.71]* -2.54  

1-D Hausdorff 0.63 [0.44, 0.83] 0.52 [0.21, 0.83]** -3.25  

N-D Hausdorff 0.60 [0.41, 0.78] 0.36 [0.05, 0.68]* -2.30  

AHV 0.69 [0.51, 0.88] -0.76 [-1.08, -0.44]*** -4.71  

 
Neuroreader ROI Label Z  CN Template Mean Vol (±SD) ( mm3 ) 
Left Hippocampus 9.12 0.48 (±0.74) 
Left Temporal Lobe 8.43 0.45 (±0.68) 
Left Amygdala 8.43 0.60 (±0.79) 
Right Amygdala 8.37 0.54 (±0.80) 
Right Hippocampus 7.82 0.45 (±0.71) 
Right Temporal Lobe 7.53 0.44 (±0.72) 
Left Parietal Lobe  6.74 0.37 (±0.83) 
Right Parietal Lobe  6.55 0.40 (±0.93) 
Left Frontal Lobe 5.71 0.30 (±0.94) 
Right Frontal Lobe  5.48 0.26 (±0.98) 
Left Thalamus 5.17 0.33 (±1.01) 
Right Thalamus  4.42 0.31 (±1.02) 

 
Group Comparison Metric AUC [95% CI] Cohen's d [95% CI] z-score 

CN vs MCI 
ADNS 0.64 [0.57, 0.71] -0.55 [-0.58, -0.52]*** -7.31 
AHV 0.65 [0.56, 0.74] 0.55 [0.52, 0.58]*** -7.27 

CN vs AD 
ADNS 0.91 [0.86, 0.97] -2.11 [-2.29, -1.93]*** -16.67 
AHV 0.89 [0.82, 0.95] 1.72 [1.55, 1.89]*** -14.27 

MCI vs AD 
ADNS 0.81 [0.74, 0.88] -1.18 [-1.20, -1.15]*** -11.35 
AHV 0.76 [0.67, 0.85] 0.92 [0.90, 0.94]*** -9.04 

Supplementary Table 4. Significant Neuroreader-Based ROIs by Z-Score Ranking and CN Template Values. The 
12 significant regions extracted by performing ANOVA for each of the 22 Neuroreader-based regions in the ROI 
selection cohort are reported in the above table along with corresponding z-scores. Significance was established based on 
an alpha=0.05, Bonferroni-corrected. Structures are identified by anatomical labels used by Neuroreader. Mean volumes 
and standard deviations (SD) of the CN template cohort are included for each respective region.  

Supplemental Table 5. Baseline Assessment of Sensitivity to Diagnosis Using Neuroreader-Based ROIs.  
Assessment of AD-NeuroScore on the basis of metric sensitivity to diagnosis at baseline, tested again using the 
Neuroreader-based ROIs to generate AD-NeuroScore. AHV, computed using the Neuroreader-based ROIs is 
included for benchmarking. Significant group comparisons are denoted by * to indicate p<0.05, ** to indicate 
p<0.01, and *** to indicate p<0.001, Holm-Bonferroni corrected.  
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Class t Metric 
r n 

CDR-SB MMSE ADAS-11 CDR-SB MMSE ADAS-11 

All 

Baseline 
AD-NeuroScore 0.52*** -0.34*** 0.52*** 926 926 926 

AHV -0.43*** 0.28*** -0.47*** 926 926 926 

12 
AD-NeuroScore -0.27*** 0.20*** -0.24*** 525 697 721 

AHV 0.23*** -0.16*** 0.19*** 525 697 721 

24 AD-NeuroScore -0.40*** 0.26*** -0.38*** 402 614 626 
AHV 0.32*** -0.19*** 0.26*** 402 614 626 

36 AD-NeuroScore -0.39*** 0.21*** -0.31*** 285 332 345 
AHV 0.34*** -0.17** 0.26*** 285 332 345 

48 AD-NeuroScore -0.42*** 0.25*** -0.31*** 205 369 375 
AHV 0.35*** -0.19*** 0.26*** 205 369 375 

CN 

Baseline AD-NeuroScore -0.07 -0.01 0.08 286 286 286 
AHV 0.00 -0.01 -0.17 286 286 286 

12 AD-NeuroScore -0.74 -0.05 0.04 13 183 180 
AHV 0.53 -0.03 0.01 13 183 180 

24 
AD-NeuroScore -0.57 -0.07 -0.07 17 220 221 

AHV 0.45 -0.08 0.05 17 220 221 

36 
AD-NeuroScore - -0.07 -0.02 1 44 36 

AHV - -0.19 0.03 1 44 36 

48 
AD-NeuroScore -0.11 0.03 -0.07 5 126 133 

AHV 0.52 -0.21 -0.01 5 126 133 

MCI 

Baseline 
AD-NeuroScore 0.26*** -0.10* 0.32*** 511 511 511 

AHV -0.22*** 0.11* -0.35*** 511 511 511 

12 
AD-NeuroScore -0.29*** 0.20*** -0.20*** 418 423 452 

AHV 0.23*** -0.13* 0.17** 418 423 452 

24 AD-NeuroScore -0.40*** 0.28*** -0.34*** 357 357 377 
AHV 0.32*** -0.15* 0.25*** 357 357 377 

36 AD-NeuroScore -0.39*** 0.23*** -0.31*** 284 273 309 
AHV 0.35*** -0.16* 0.27*** 284 273 309 

48 AD-NeuroScore -0.42*** 0.29*** -0.31*** 199 226 242 
AHV 0.35*** -0.19* 0.28*** 199 226 242 

AD 

Baseline AD-NeuroScore 0.23 -0.15 0.29* 129 129 129 
AHV -0.08 0.08 -0.14 129 129 129 

12 AD-NeuroScore 0.09 0.01 0.02 94 91 89 
AHV -0.08 -0.03 -0.22 94 91 89 

24 
AD-NeuroScore 0.11 0.14 -0.28 28 37 28 

AHV -0.34 -0.10 -0.20 28 37 28 

36 
AD-NeuroScore - -0.06 - 0 15 0 

AHV - -0.09 - 0 15 0 

48 
AD-NeuroScore - 0.26 - 1 17 0 

AHV - -0.11 - 1 17 0 

Supplementary Table 6. Linear Regression Results using Neuroreader-Based ROIs. Repeated baseline and longitudinal 
assessment of AD-NeuroScore based on metric association with disease severity (MMSE, ADAS-11, and CDR-SB scores) 
along with the AHV benchmark, tested with linear regression in the overall experimental cohort and in each diagnostic sub-
group, using the Neuroreader-based ROIs to generate AD-NeuroScore and AHV. Significant group comparisons are denoted 
by * to indicate p<0.05, ** to indicate p<0.01, and *** to indicate p<0.001, Holm-Bonferroni corrected.  
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Comparison  t Metric AUC [95% CI] Cohen's d [95% CI] z-score  
 

St
ab

l e
 v

s D
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e 

 

All 

12 months ADNS 0.66 [0.50, 0.83] 0.62 [0.33, 0.91]*** -4.21  

  AHV  0.66 [0.53, 0.79]  -0.53 [-0.81, -0.24]** -3.57  

24 months ADNS 0.72 [0.58, 0.86] 0.86 [0.62, 1.09]*** -7.14  

  AHV 0.72 [0.62, 0.83] -0.79 [-1.02, -0.55]*** -6.58  

36 months  ADNS 0.69 [0.58, 0.81]  0.74 [0.48, 1.00]*** -5.53  

  AHV 0.72 [0.59, 0.84] -0.79 [-1.05, -0.52]*** -5.88  

48 months  ADNS 0.68 [0.55, 0.82] 0.77 [0.49, 1.04]*** -5.53  

    AHV 0.71 [0.58, 0.85] -0.79 [-1.06, -0.51]*** -5.66  

CN 

12 months  ADNS 0.54 [0.14, 0.94] -0.24 [-0.88, 0.40] -0.73  

  AHV 0.65 [0.27, 1.03] -0.59 [-1.23, 0.06] -1.79  

24 months ADNS 0.56 [0.22, 0.89] 0.36 [-0.10, 0.82] -1.53  

  AHV 0.75 [0.51, 0.99] -0.79 [-1.26, -0.33]** -3.34  

36 months  ADNS 0.34 [0.06, 0.62] -0.02 [-0.72, 0.68] -0.06  

  AHV 0.77 [0.48, 1.07] -0.84 [-1.57, -0.11] -2.30  

48 months  ADNS 0.43 [0.09, 0.77] 0.11 [-0.44, 0.65] -0.39  

    AHV 0.73 [0.51, 0.94] -0.65 [-1.20, -0.10] -2.34  

MCI 

12 months ADNS 0.77 [0.63, 0.91] 1.07 [0.74, 1.41]*** -6.33  

  AHV 0.69 [0.51, 0.87] -0.69 [-1.02, -0.36]*** -4.14  

24 months ADNS 0.77 [0.65, 0.88] 1.12 [0.84, 1.40]*** -7.78  

  AHV 0.72 [0.59, 0.85] -0.85 [-1.12, -0.57]*** -5.99  

36 months  ADNS 0.73 [0.61, 0.86] 0.94 [0.65, 1.23]*** -6.41  

  AHV 0.74 [0.61, 0.86] -0.86 [-1.14, -0.57]*** -5.87  

48 months  ADNS 0.73 [0.57, 0.89] 0.82 [0.51, 1.14]*** -5.09  

    AHV 0.69 [0.53, 0.86] -0.76 p-1.08, -0.44]*** -4.71  

Supplementary Table 7. Longitudinal Assessment of AD-NeuroScore (ADNS) and AHV based on Diagnosis Transitions Using 
Neuroreader-Based ROIs. AD-NeuroScore (ADNS) assessment based on ability to predict progression (DTC) at each longitudinal session, using 
Neuroreader analogous ROIs. Results are stratified by diagnostic group. Two-tailed t-tests were performed for each DTC comparison and z-scores, 
effect sizes (Cohen’s d) with 95% CIs, and AUC-ROC values with 95% confidence intervals were subsequently calculated. Significant group 
comparisons are denoted by * to indicate p<0.05, ** to indicate p<0.01, and *** to indicate p<0.001, Holm-Bonferroni corrected.  
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