Abstract
BACKGROUND Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 “PASC” or “Long COVID”) remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity using advanced cardiac testing.
METHODS We performed cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after confirmed SARS-CoV-2 infection in Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; substudy of NCT04362150). Adults who completed a research echocardiogram (at a median 6 months after SARS-CoV-2 infection) without evidence of heart failure or pulmonary hypertension were asked to complete additional cardiopulmonary testing approximately 1 year later. Although participants were recruited as a prospective cohort, to account for selection bias, the primary analyses were as a case-control study comparing those with and without persistent cardiopulmonary symptoms. We also correlated findings with previously measured biomarkers. We used logistic regression and linear regression models to adjust for potential confounders including age, sex, body mass index, time since SARS-CoV-2 infection, and hospitalization for acute SARS-CoV-2 infection, with sensitivity analyses adjusting for medical history.
RESULTS Sixty participants (unselected for symptoms, median age 53, 42% female, 87% non- hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On maximal CPET, 18/37 (49%) with symptoms had reduced exercise capacity (peak VO2<85% predicted) compared to 3/19 (16%) without symptoms (p=0.02). The adjusted peak VO2 was 5.2 ml/kg/min (95%CI 2.1-8.3; p=0.001) or 16.9% lower actual compared to predicted (95%CI 4.3- 29.6; p=0.02) among those with symptoms compared to those without symptoms. Chronotropic incompetence was present among 12/21 (57%) with reduced VO2 including 11/37 (30%) with symptoms and 1/19 (5%) without (p=0.04). Inflammatory markers (hsCRP, IL-6, TNF-α) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias on ambulatory monitoring were not present.
CONCLUSIONS We found evidence of objectively reduced exercise capacity among those with cardiopulmonary symptoms more than 1 year following COVID-19, which was associated with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain exercise intolerance among some with cardiopulmonary phenotype Long COVID.
Key Points Long COVID symptoms were associated with reduced exercise capacity on cardiopulmonary exercise testing more than 1 year after SARS-CoV-2 infection. The most common abnormal finding was chronotropic incompetence. Reduced exercise capacity was associated with early elevations in inflammatory markers.
Competing Interest Statement
AC, BCY, JWW, and CJP are employees of Monogram Biosciences, Inc., a division of LabCorp. PYH has received modest honoraria from Gilead and Merck and research grant from Novartis unrelated to the submitted work. All other authors report no disclosures or conflicts.
Funding Statement
This study was funded by philanthropic gifts from Charles W. Swanson and the Ed and Pearl Fein Foundation, research grants from the NIH/NLBI including L30 HL159695 and K12 HL143961, and internal funds from the Division of Cardiology at Zuckerberg San Francisco General. Dr. Durstenfeld is funded by K12 HL143961. This work was assisted in part by a CFAR-ARI Boost Award from the UCSF AIDS Research Institute. JDK is supported by NIH/NIAID K23 AI135037. TJH is supported by NIH/NIAID 3R01A1141003-03S1. PYH is supported by NIH/NAID 2K24AI112393-06. This publication was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through UCSF-CTSI Grant Number UL1TR001872. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of University of California, San Francisco gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Presented in part as a late breaking oral presentation at Conference on Retroviruses and Opportunistic Infections, 2/2022, as an oral presentation at the Heart Rhythm Society in 5/2022, and in full at the American Heart Association Scientific Sessions 11/2022.
Abbreviations list: PASC=post-acute sequelae of COVID-19; hsCRP=high sensitivity c- reactive protein; LIINC=Long-term Impact of Infection with Novel Coronavirus; LV=left ventricle; RV=right ventricle; CPET=cardiopulmonary exercise testing; CMR=cardiac magnetic resonance imaging; AHRR=adjusted heart rate reserve; POTS=postural orthostatic tachycardia syndrome;
Updated with complete CPET cohort and updated figures and tables.
Data Availability
All data produced in the present study are available upon reasonable request to the authors.