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Key Points: Long COVID symptoms were associated with reduced exercise capacity on 37 
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Abstract 1 

BACKGROUND Mechanisms underlying persistent cardiopulmonary symptoms following 2 
SARS-CoV-2 infection (post-acute sequelae of COVID-19 “PASC” or “Long COVID”) remain 3 
unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced 4 
exercise capacity using advanced cardiac testing. 5 

METHODS We performed cardiopulmonary exercise testing (CPET), cardiac magnetic 6 
resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after 7 
confirmed SARS-CoV-2 infection in Long-Term Impact of Infection with Novel Coronavirus 8 
cohort (LIINC; substudy of NCT04362150). Adults who completed a research echocardiogram 9 
(at a median 6 months after SARS-CoV-2 infection) without evidence of heart failure or 10 
pulmonary hypertension were asked to complete additional cardiopulmonary testing 11 
approximately 1 year later. Although participants were recruited as a prospective cohort, to 12 
account for selection bias, the primary analyses were as a case-control study comparing those 13 
with and without persistent cardiopulmonary symptoms. We also correlated findings with 14 
previously measured biomarkers. We used logistic regression and linear regression models to 15 
adjust for potential confounders including age, sex, body mass index, time since SARS-CoV-2 16 
infection, and hospitalization for acute SARS-CoV-2 infection, with sensitivity analyses 17 
adjusting for medical history.  18 

RESULTS Sixty participants (unselected for symptoms, median age 53, 42% female, 87% non-19 
hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On 20 
maximal CPET, 18/37 (49%) with symptoms had reduced exercise capacity (peak VO2<85% 21 
predicted) compared to 3/19 (16%) without symptoms (p=0.02). The adjusted peak VO2 was 5.2 22 
ml/kg/min (95%CI 2.1-8.3; p=0.001) or 16.9% lower actual compared to predicted (95%CI 4.3-23 
29.6; p=0.02) among those with symptoms compared to those without symptoms. Chronotropic 24 
incompetence was present among 12/21 (57%) with reduced VO2 including 11/37 (30%) with 25 
symptoms and 1/19 (5%) without (p=0.04). Inflammatory markers (hsCRP, IL-6, TNF-α) and 26 
SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak 27 
VO2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias on 28 
ambulatory monitoring were not present.  29 

CONCLUSIONS We found evidence of objectively reduced exercise capacity among those 30 
with cardiopulmonary symptoms more than 1 year following COVID-19, which was associated 31 
with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain 32 
exercise intolerance among some with cardiopulmonary phenotype Long COVID.  33 

 34 
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Graphical Abstract 1 
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Abbreviations list: PASC=post-acute sequelae of COVID-19; hsCRP=high sensitivity c-1 
reactive protein; LIINC=Long-term Impact of Infection with Novel Coronavirus; LV=left 2 
ventricle; RV=right ventricle; CPET=cardiopulmonary exercise testing; CMR=cardiac magnetic 3 
resonance imaging; AHRR=adjusted heart rate reserve; POTS=postural orthostatic tachycardia 4 
syndrome; 5 
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Background 1 

Following acute SARS-CoV-2 infection, some individuals experience persistent symptoms of 2 

“Long COVID” (LC), a type of post-acute sequelae of COVID-19 (PASC) [1]. By 3-6 months 3 

after SARS-CoV-2 infection, cardiac function is generally normal on echocardiogram [2-4], 4 

suggesting that other techniques are needed to identify physiologic correlates of symptoms. 5 

Cardiac magnetic resonance imaging (CMR) has revealed changes in parametric mapping and 6 

late gadolinium enhancement (LGE) suggestive of cardiac inflammation without consistent 7 

associations with symptoms or differences from controls [5-9]. Cardiopulmonary exercise testing 8 

(CPET) has demonstrated reduced exercise capacity 3-6 months after SARS-CoV-2 infection 9 

without consistent patterns of limitations [10], and with limited data beyond 1 year after 10 

infection.  11 

We designed the Long-Term Impact of Infection with Novel Coronavirus (LIINC) study (NCT 12 

04362150) to evaluate physical and mental health following SARS-COV-2 infection by 13 

including individuals representing the spectrum of acute illness and post-acute-recovery [11]. 14 

The purpose of this substudy was to elucidate mechanisms underlying cardiopulmonary 15 

symptoms >1 year following SARS-CoV-2 infection by comparing symptomatic and recovered 16 

individuals using CMR, CPET, and ambulatory rhythm monitoring, and correlating findings with 17 

blood-based markers. 18 

Methods 19 

As previously reported, LIINC is a San Francisco-based post-COVID cohort [11]. After our 20 

initial echocardiogram-based study did not reveal cardiac mechanisms of symptoms [2], we 21 

amended our protocol to conduct a second visit about 1 year later among participants who 22 
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completed an echocardiogram visit and were willing to undergo additional cardiopulmonary 1 

testing. In this subset, we performed cross-sectional cardiopulmonary testing including CPET, 2 

CMR, and ambulatory rhythm monitoring and correlated with already measured biomarkers from 3 

prior cohort visits (including at the time of the echocardiogram for troponin, NT-pro-BNP, and 4 

hsCRP).  5 

Participants 6 

We invited LIINC participants with PCR-confirmed SARS-CoV-2 infection who completed an 7 

echocardiogram study visit to participate in additional cardiopulmonary testing irrespective of 8 

symptom status. Those with pregnancy (due to expected changes during pregnancy), cardiac 9 

disease (congenital heart disease, heart failure, myocardial infarction, coronary revascularization 10 

with percutaneous coronary intervention or coronary artery bypass graft surgery, or other heart 11 

surgery), pulmonary disease requiring home oxygen or lung surgery, and musculoskeletal or 12 

neurologic conditions that precluded participation in cycler ergometry were excluded. 13 

Additionally, those with non-MRI compatible implants or claustrophobia were excluded from 14 

CMR; those with eGFR <30 ml/min/1.73m2 were excluded from gadolinium. 15 

Symptoms 16 

Participants completed a structured interview about medical history, characteristics of acute 17 

infection, cardiopulmonary diagnoses, and symptoms within the previous two weeks. We defined 18 

cardiopulmonary symptoms as chest pain, dyspnea, or palpitations and symptoms as 19 

cardiopulmonary symptoms or fatigue in the 2 weeks preceding the study visit. Consistent with 20 

the WHO definition, all classified as symptomatic were >3 months after SARS-CoV-2 infection 21 

with new symptoms without alternative cardiopulmonary explanations [12]. 22 
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Blood-Based Markers 1 

Participants had venous blood collected and processed for serum and plasma on the day of the 2 

echocardiogram. Samples were batch processed for measurement of high-sensitivity troponin I, 3 

N-terminal prohormone b-type natriuretic protein. A subset had antibodies and additional 4 

markers measured at two earlier time points (<90 days and 90-150 days after infection) including 5 

IL-6, IL-10, glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), monocyte 6 

chemoattractant protein-1 (MCP-1), interferon gamma (IFN -γ), and tumor necrosis factor 7 

(TNF), and SARS-CoV-2 receptor-binding domain (RBD) immunoglobulin G (IgG). These 8 

samples were assayed by Monogram Biosciences using the Quanterix Simoa® platform blinded 9 

with respect to patient and clinical information, and assay performance was consistent with 10 

manufacturers’ specifications [13]. 11 

Cardiac Magnetic Resonance Imaging  12 

Multiparametric, sequence-standardized, blinded (technician and reader) cardiac magnetic 13 

resonance imaging (CMR) was performed with a 3T system (Premier, General Electric), 14 

including assessment of LV and RV size and function, parametric mapping, and late gadolinium 15 

enhancement. Measurements were performed by a single reader at a dedicated workstation using 16 

Medis (Leiden, Netherlands) and AI-assisted Arterys (San Francisco, CA) under supervision of a 17 

senior cardiac imager, both blinded to clinical variables, and in accordance with Society for 18 

Cardiovascular Magnetic Resonance recommendations. The full protocol is described in 19 

Supplemental Methods. 20 

Cardiopulmonary Exercise Testing 21 
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Noninvasive CPETs were performed by an exercise physiologist and cardiology nurse 1 

practitioner blinded to participant data according to standard protocol using a metabolic cart 2 

(Medical Graphics Corporation Ultima CardiO2) and cycle ergometer (Lode Corival CPET) with 3 

continuous 12 lead ECG monitoring (GE CASE) and noninvasive blood pressure and pulse 4 

oximetry measurement. After rest ECG, BP and spirometry measurements were taken, 5 

participants exercised to symptom limited maximal exertional with work increased in 1-minute 6 

steps targeting a 10-minute test. We determined the work increase per 1 minute step based on the 7 

expected peak VO2 from the maximum voluntary ventilation for a goal 10 minute test, rounded 8 

to 5 Watts/min increments based on reported exercise (range 10-30 Watts/min) in accordance 9 

with guidelines [14]. The full protocol is described in Supplemental Methods. 10 

We evaluated measured peak VO2 (in ml/kg/min), estimated percent predicted peak VO2 using 11 

the Wasserman equations [15], and classified peak VO2 <85% predicted as reduced. We defined 12 

chronotropic incompetence as peak VO2 <85% predicted, adjusted heart rate reserve (AHRR) 13 

<80% [(HRpeak-HRrest)/(220-age-HRrest)], and no alternative explanation for exercise limitation 14 

[16]. CPETs were interpreted independently by two cardiologists with discrepancies resolved 15 

through consensus.   16 

Ambulatory Rhythm Monitoring  17 

An ambulatory rhythm monitor (Carnation Ambulatory Monitor, BardyDx) was placed on 18 

participants’ chests. They were instructed wear it for 2 weeks, press the button for symptoms, 19 

and record a symptom diary. Monitors were processed according to BardyDx standard 20 

procedures, and reports were overread by a cardiologist. 21 

Statistical Analysis 22 
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To compare participants with and without symptoms, we used logistic regression to estimate 1 

adjusted odds ratios of parameters with symptoms and linear regression to estimate adjusted 2 

mean differences. Adjusted models included age, sex, time since SARS-CoV-2 infection, 3 

hospitalization, and body mass index. Non-normally distributed variables were log-transformed 4 

and findings are reported per doubling or 10-fold change. For biomarker data we report 5 

unadjusted Pearson’s rho correlation coefficients and adjusted linear regression models. For 6 

longitudinal data we used mixed effects models with random intercept per patient. We conducted 7 

sensitivity analyses considering other symptom definitions and additionally adjusting for 8 

potentially relevant medical history (hypertension, diabetes, asthma/COPD, and HIV) and 9 

echocardiographic (LV ejection fraction and LV diastolic function) and spirometry parameters 10 

(forced vital capacity, forced expiratory volume in 1 second, and maximal voluntary ventilation. 11 

REDCap was used for data entry. Statistical analyses were performed using STATA version 12 

17.1. P values <0.05 were considered statistically significant and were not adjusted for multiple 13 

testing. The first author (MSD) had full access to the data and takes responsibility for the 14 

integrity of the data and analysis. The study was approved by the UCSF Institutional Review 15 

Board (IRB 20-33000). All participants provided written informed consent prior to participation.  16 

 17 

Results 18 

Participant Characteristics 19 

60 participants were included. Median age was 53 (IQR 41-59.5), 25 (42%) were female, and 8 20 

(13%) were hospitalized during acute infection (Table 1). Median infection was in June 2020 21 

(IQR March 2020-November 2020), so most participants were infected with the ancestral strain. 22 
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Four participants were vaccinated pre-infection (“breakthrough” infections), and 57 (95%) 1 

received at least one SARS-CoV-2 vaccine prior to advanced testing. 2 

Symptoms Persist at 18 Months 3 

At visit 1 (median 6 months after infection; echocardiogram visit), 40/60 (67%) reported 4 

symptoms and 32/60 (53%) reported cardiopulmonary symptoms. At visit 2 (median 17.6 5 

months; advanced cardiopulmonary testing visit), 38/60 (63%) reported symptoms and 31/60 6 

(52%) reported cardiopulmonary symptoms. Trajectories of individual symptoms were similar 7 

(Supplemental Table 1). Self-reported reduced exercise capacity was highly associated with 8 

symptoms: 29/33 (88%) reporting reduced exercise capacity also reported other symptoms 9 

versus 9/27 (33%) reporting preserved or improved exercise capacity (OR 14.5, 95%CI 3.9-54.1; 10 

p<0.001). 11 

CPETs were Maximal Tests 12 

Out of 60 participants who attended a CPET visit, 59 completed CPET at a median 17.6 months 13 

after infection (IQR 15.8-19.4); one participant was too hypertensive to undergo CPET. Out of 14 

59 CPETs performed, one was excluded due to β-blocker use, two were excluded for 15 

submaximal tests with respiratory exchange ratio (RER) <1.05, leaving 56 CPETs for analysis. 16 

Three were stopped for hypertensive response (after reaching >100% predicted peak VO2); all 17 

others were symptom-limited maximal tests. No included participants were taking chronotropic 18 

medications or antianginals including β-blockers, non-dihydropyridine calcium channel blockers, 19 

ivabradine, or long-acting nitrates at the time of CPET. 20 

Exercise Capacity Lower than Predicted and Objectively Reduced Among those with Symptoms  21 
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Peak VO2 was <85% predicted among 18/37 (49%) with symptoms compared to 3/19 (16%) 1 

without symptoms (p=0.02). A 5 ml/kg/min decrease in peak VO2 was associated with 2.75 2 

times higher odds of symptoms (95%CI 1.39-5.44; p=0.004). Those with symptoms completed 3 

less work despite higher perceived effort and similar respiratory exchange ratio (Table 2). 4 

Despite reduced exercise capacity among those with symptoms, most CPET parameters were not 5 

associated with symptoms (Table 2 and Supplemental Table 2 for additional parameters 6 

including rest spirometry & echocardiographic parameters). 7 

As shown in Figure 1 and Table 2, peak VO2 was 22.7±8.1 and 29.6±7.0 ml/kg/min among those 8 

with and without symptoms, respectively, a difference of 6.9 ml/kg/min (95%CI 2.5-11.3; 9 

p=0.003) and 92% versus 107% percent predicted (difference 15% predicted, 95%CI; p=0.02). 10 

The adjusted difference in peak VO2 was 5.2 ml/kg/min (95%CI 2.1-8.3; p=0.001), 0.4 L/min 11 

(95%CI 0.09 to 0.73; p=0.02), and 16.9% lower predicted (95%CI 4.3-29.6; p=0.02). Results 12 

were unchanged in sensitivity analysis adding diabetes and hypertension; the adjusted difference 13 

in peak VO2 was 4.5 ml/kg/min (95%CI 1.40-7.50; p=0.005). Similarly, results were unchanged 14 

in sensitivity analyses accounting for diabetes, hypertension, asthma/COPD, and HIV, resting 15 

spirometry values, and echocardiographic parameters (adjusted difference 3.9 ml/kg/min, 95%CI 16 

0.6-7.3; p=0.02), but did vary based on symptom classification used (Supplemental Table 3). 17 

Classification of Reduced Exercise Capacity by Pattern of CPET Findings 18 

Among 56 maximal CPETs, 21 (37%) had peak VO2<85% predicted; no participants had 19 

ventilatory limitation, 3 had cardiac limitation, and one had a hypertensive response. Four had 20 

findings most consistent with deconditioning/obesity, and one participant’s peak VO2 was 84% 21 

predicted with no other abnormalities (possibly deconditioning). Twelve (21% overall, 57% of 22 

those with reduced exercise capacity) had chronotropic incompetence. Among those with 23 
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symptoms, 11/37 (30%) had chronotropic incompetence compared to 1/19 (5%) without 1 

symptoms (p=0.04).  2 

Compared to those with peak VO2 ≥85% without an impaired chronotropic response, those with 3 

chronotropic incompetence had 49 bpm lower peak heart rate (119 bpm vs 170; 95%CI 40-60; 4 

p<0.0001; Figure 2). They completed 100 Watts less work (196 vs 96, 95%CI 49-152; p=0.0005) 5 

and had 12.2 ml/kg/min lower peak VO2 (95%CI 6.5-17.9; p=0.0001). Those with chronotropic 6 

incompetence also had reduced HR recovery at 1 minute (7.9 bpm lower, 95%CI 1.3-14.6; 7 

p=0.02). In absolute terms, those with chronotropic incompetence generated a mean peak oxygen 8 

consumption of 1.59 L/min compared to 2.35 L/min among those with normal exercise capacity 9 

(difference 0.76 L/min, 95%CI 0.23 to 1.28; p=0.007); a linear regression model with only rest 10 

and peak heart rate explains 54% of the difference in relative oxygen consumption (ml/kg/min) 11 

and 34% of the difference in absolute oxygen consumption (L/min).  12 

Normal Cardiac Structure and Function on CMR 13 

Forty-three participants completed CMR, including two without gadolinium (one eGFR<30 and 14 

one due to inability to place an IV). CMR demonstrated normal LV and RV volumes and 15 

ejection fraction, and only RV volumes were associated with symptoms with smaller RV size 16 

associated with higher odds of symptoms (Table 3). No participants had LGE suggestive of 17 

myocardial scar, and native T1 and T2 parametric mapping values and ECV were not associated 18 

with symptoms. Some participants (10/43, 23%) had trace or small pericardial effusions with no 19 

difference by symptoms (p=0.59).  20 

Palpitations are Not Explained by Arrhythmias on Ambulatory Rhythm Monitoring 21 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2022.05.17.22275235doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.17.22275235


13 
Durstenfeld et al. CPET, CMR, & Rhythm Findings >1 year after COVID-19 

Of those included, 38 participants wore and returned an ambulatory rhythm monitor. Lower 1 

maximum heart rate, age-predicted maximum heart rate, and adjusted heart rate reserve were all 2 

associated with symptoms consistent with our CPET findings (Table 4). One symptomatic 3 

individual had a single episode of non-sustained ventricular tachycardia without recorded 4 

symptoms or button push; no other clinically significant arrhythmias including atrial fibrillation 5 

or atrial flutter were present in either group (Supplemental Table 4). The burden of sinus 6 

tachycardia and supraventricular tachycardias was not significantly increased among those with 7 

symptoms. Premature ventricular contractions were associated with symptoms, and we could not 8 

exclude an association between premature atrial contractions and symptoms (Table 4). 9 

Symptomatic individuals pressed the button 3.2 times more often (95%CI 2.1-4.7; p<0.001). 10 

Button pushes were mostly during sinus rhythm, sinus tachycardia, or supraventricular ectopy 11 

(Supplemental Figure). Results were similar considering only those with palpitations.  12 

Ambulatory Rhythm Monitoring Correlates of Chronotropic Incompetence on CPET 13 

CPET peak HR correlated with maximum sinus HR during ambulatory monitoring (Pearson’s 14 

r=0.71; p<0.001), with ambulatory peak HR 29 bpm lower among those with chronotropic 15 

incompetence (95%CI 13-45; p<0.001). Chronotropic incompetence was associated with 12.6 16 

bpm higher minimum HR (95%CI 3-22; p=0.01) and 59ms lower HR variability by standard 17 

deviation n-to-n (95%CI 24-95; p=0.002; Supplemental Table 4). PR intervals were not 18 

significantly longer among those with chronotropic incompetence (171ms vs 168ms; p=0.72). 19 

One symptomatic individual had 2nd degree Mobitz type 1 (normal finding), and no participants 20 

had 2nd degree Mobitz type 2 or 3rd degree heart block.  21 

Markers of Inflammation Early in PASC are Associated with Exercise Capacity and Pericardial 22 

Effusions More than 1 Year Later 23 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2022.05.17.22275235doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.17.22275235


14 
Durstenfeld et al. CPET, CMR, & Rhythm Findings >1 year after COVID-19 

Markers of inflammation in the blood (hsCRP, IL-6, TNF) and SARS-CoV-2 RBD IgG level, 1 

but not hs-troponin or NT-pro-BNP measured at 3-9 months after infection are negatively 2 

correlated with peak VO2 more than one year after infection (Figure 3). After adjustment, peak 3 

VO2 was 6.2 ml/kg/min lower per doubling of TNF (95%CI 0.6-11.8; p=0.03) and 1.8 ml/kg/min 4 

lower per doubling of hsCRP (95%CI 0.8-2.9; p=0.001). 5 

Longitudinal serum biomarkers of inflammation, neurologic injury, and SARS-CoV-2 RBD IgG 6 

were measured at <90 days from SARS-CoV-2 acute infection (median 52 days) and between 7 

90-150 days (median 124 days) in 36 participants who underwent CPET (Figure 4), all prior to 8 

vaccination. SARS-CoV-2 IgG (2.99-fold higher mean ratio, 95%CI 1.41-6.33; p=0.004) and 9 

TNF (1.34-fold higher mean ratio, 95%CI 1.11-1.61; p=0.002) were higher at <90 days among 10 

those with reduced exercise capacity. At 90-150 days, only SARS-CoV-2 IgG (2.12-fold higher 11 

mean ratio, 95%CI 1.02-4.43; p=0.04) remained statistically significant, although after 12 

adjustment it was no longer statistically significant (1.1 ml/kg/min per doubling, 95%CI -0.3 to 13 

2.4; p=0.11). We could not exclude an effect of IL-6 (1.34-fold higher mean ratio, 95%CI 0.92-14 

1.96; p=0.11; adjusted 2.1 ml/kg/min per doubling, 95%CI -0.5-4.6; p=0.11). Except for IL-6, all 15 

other biomarkers decreased over time regardless of eventual exercise capacity.  16 

Discussion 17 

We demonstrate that clinically meaningful reductions in objective exercise capacity are 18 

associated with LC symptoms more than 1 year after SARS-CoV-2 infection. Our findings 19 

suggest that chronotropic incompetence contributes to exercise limitations in LC. We found 20 

elevated inflammatory markers and SARS-CoV-2 antibody levels early in PASC are associated 21 

with reduced exercise capacity more than a year later. We did not find evidence of myocarditis, 22 

cardiac dysfunction, or clinically significant arrhythmias. Finally, our study validates that CPET 23 
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allows objective measurement of patient-reported exercise intolerance and therefore may be 1 

useful for interventional trials of therapeutics for LC.  2 

Connections between Inflammation, Reduced Exercise Capacity, and Autonomic Responses 3 

Our study extends prior findings that inflammatory markers including hsCRP, IL-6, and TNF are 4 

negatively correlated with peak VO2 early after COVID-19 hospitalization [17] to >1 year after 5 

infection and those not hospitalized. This correlation may reflect a common cause for 6 

inflammation and exercise limitations in PASC (i.e., viral persistence [18], immune activation 7 

[19]), or these markers could be on the causal path from infection to symptoms and reduced 8 

exercise capacity. Endothelial and coronary microvascular dysfunction occur in PASC [20-23] 9 

and are associated with chronotropic incompetence and inflammation [24, 25]. Inflammation 10 

may alter autonomic function which could explain reduced exercise capacity and chronotropic 11 

incompetence.  12 

Data from animal models support the hypothesis that chronotropy may be related to 13 

inflammatory signals and endothelial functions. Apart from COVID-19, IL-6 impairs 14 

chronotropic responses to autonomic signaling in mice [26] and may regulate energy allocation 15 

during exercise [27]. In addition, IL-6 and TNF impair endothelial function in animal models via 16 

increasing oxidative stress and suppressing endothelial nitric oxide synthase pathways [28]. 17 

Ideally, clinical trials should evaluate whether anti-inflammatory strategies improve chronotropy 18 

and endothelial function, as both impact exercise capacity and risk of cardiovascular disease. 19 

Autonomic Function, Sinus Node Function, and Inflammation in PASC 20 

Altered autonomic function is a possible unifying explanation for our and others’ CPET findings 21 

in PASC including altered peripheral oxygen extraction [29], preload failure [30-32], and 22 
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disordered breathing [30]. Orthostatic intolerance, an autonomic symptom, occurs in PASC [33], 1 

and skin biopsies suggest small fiber neuropathy in LC-associated postural-orthostatic 2 

tachycardia syndrome [34, 35]. Effects on brainstem regulatory regions or the amygdala [36] 3 

could also modify autonomic responses to exercise.  4 

An alternative hypothesis is that SARS-CoV-2 could alter sinus node function. Autopsy studied 5 

have not specifically examined sinus node tissue for evidence of persistent viral infection of the 6 

sinus node [37], but hamster models suggest that SARS-CoV-2 can infect hamster sinoatrial 7 

node cells and in vitro sinoatrial-like pacemaker cells resulting in altered calcium handling, 8 

activated inflammatory pathways, and induced ferroptosis [38]. Sinus node remodeling may 9 

reduce sinus node reserve in heart failure [39]. Although we did not find evidence of cardiac 10 

fibrosis or sinus node dysfunction, we cannot fully exclude that sinus node dysfunction may 11 

contribute to CI. A combination of autopsy studies that specifically examine sinoatrial tissue and 12 

clinical studies may be necessary to identify the relevant mechanisms.  13 

Inflammation modifies autonomic and chronotropic responses. Young adults recovering from 14 

SARS-CoV-2 have elevated sympathetic activation at rest [40]. Chronic inflammation in other 15 

settings is associated with parasympathetic and sympathetic imbalance, chronotropic 16 

incompetence and reduced exercise capacity [24, 41]. Thus, chronic inflammation could blunt 17 

chronotropy in PASC even without autonomic nervous system or sinus node damage.  18 

Other Studies of PASC using CPET 19 

Our study is consistent with others that have reported lower peak VO2 among those with PASC 20 

compared to recovered individuals mostly at 3-6 months after severe COVID-19, which we 21 

summarized in a systematic review and meta-analysis [10]. Our findings build upon earlier 22 
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studies by (1) demonstrating reduced peak VO2 and chronotropic incompetence much later after 1 

infection (2) including evaluation of cardiac inflammation, structural heart disease and 2 

arrhythmias, (3) adjusting for confounders, (4) including recovered persons as comparators, and 3 

(5) demonstrating associations with longitudinal biomarkers. 4 

Differences in classification of exercise limitations across CPET studies of PASC may arise from 5 

selection bias, confounding, different CPET protocols, and different interpretation algorithms. 6 

Deconditioning, which contributes to reduced exercise capacity after any illness, may be 7 

misidentified from noninvasive CPET, and has been commonly reported 3-6 months after 8 

hospitalization [10]. Although reductions in physical activity after COVID-19 [42] suggest 9 

deconditioning contributes, our findings argue against deconditioning as the only explanation for 10 

most individuals as deconditioning more commonly demonstrates an accelerated rather than a 11 

blunted heart rate response.  12 

Five other studies have also found that chronotropic incompetence contributes to exercise 13 

limitations in PASC [32, 42-45]. Chronotropic incompetence may be underestimated in some 14 

studies as sensitivity and specificity vary with exercise modality and protocol and including sub-15 

maximal tests or patients on beta-blockers reduces specificity. Diagnosing chronotropic 16 

incompetence may have prognostic implications: it is associated with incident cardiovascular 17 

disease, sudden death, and all-cause mortality among men without coronary artery disease [46-18 

48]. 19 

Impaired peripheral oxygen extraction, best assessed with invasive CPET, may also contribute to 20 

exercise limitations in PASC [29], perhaps via changes in autonomic regulation of 21 

microcirculatory function [49] or altered metabolism [50]. We did not find differences in 22 

VO2/work slope, a noninvasive correlate of measured oxygen extraction. Although not observed 23 
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among our participants, dysfunctional (rapid, erratic) breathing and exercise hyperventilation 1 

may contribute to dyspnea in PASC [30, 51, 52].    2 

 3 

CMR and Ambulatory Rhythm Monitoring Findings 4 

CMR findings suggestive of myocarditis without cardiac dysfunction may be present in the early 5 

post-acute period [5, 8, 53]. Consistent with studies at later time points [6, 7], we did not find 6 

evidence of abnormal function or LGE, suggesting that myocarditis is unlikely to explain 7 

symptoms in most with PASC.   8 

Our findings are consistent with two studies that did not find arrhythmias in early PASC [54, 55]. 9 

In contrast to a study in early PASC [56], inappropriate sinus tachycardia was present only in 10 

one individual (without symptoms). Therefore, arrhythmias and inappropriate sinus tachycardia 11 

are unlikely to explain symptoms among most individuals with PASC. 12 

Implications for Therapy 13 

Investigation into mechanisms of PASC may benefit from proof-of-concept approaches to 14 

identify potential therapies. Although vaccination reduces the risk of PASC [57, 58] and the 15 

newer circulating variants may be associated with lower risk of Long COVID [59], there is no 16 

data regarding whether anti-viral, anti-inflammatory, or anti-coagulant strategies improve 17 

exercise capacity in PASC. In chronotropic incompetence separate from COVID-19, chronic 18 

supervised exercise is the only intervention demonstrated to improve exercise capacity and 19 

surrogates of autonomic function [60-62]. Exercise is an effective treatment for postural 20 

orthostatic tachycardia syndrome, which may also be related to post-viral alterations in 21 

autonomic responses to stress and occurs in PASC [63, 64]. Reports of post-exertional malaise or 22 
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symptom exacerbation (PEM/PESE) in PASC overlapping with ME/CFS [65-67] mean exercise-1 

based interventions should be considered with caution. A study of a six-week structured pacing 2 

intervention improved physical activity levels and reduced PESE [68], and another study found 3 

that supervised exercise may be helpful rather than harmful in PASC [69]. 4 

Limitations 5 

The main limitations of this observational study arise from the small sample size, non-6 

probabilistic sampling, and cross-sectional cardiac measures. Secondly, the difference in peak 7 

VO2 was sensitive to the case definition, but our definition is consistent with current consensus 8 

definitions [12]. Volunteer bias may result in overestimated prevalence and magnitude of 9 

reduced exercise capacity but should not affect classification of limitations. We did not include 10 

an uninfected comparator group and nearly all individuals were unvaccinated at the time of 11 

initial SARS-CoV-2 infection. Although we excluded those with cardiac disease, adjusted for 12 

measured confounders, and conducted sensitivity analyses adjusting for additional confounders, 13 

unmeasured residual confounders including pre-COVID fitness remain. Adjustment (in BMI, for 14 

example) may not have fully accounted for confounding. Misclassification of exercise limitations 15 

could occur since we did not perform invasive CPET, stress echocardiography, stress CMR, or 16 

stress ventriculography. Lastly, we lacked contemporaneous biomarker data with CPETs to 17 

ascertain whether a transient inflammatory process or ongoing inflammation is more likely.  18 

Conclusions 19 

In conclusion, more than 1 year after pre-vaccine index SARS-CoV-2 infection, reduced exercise 20 

capacity on CPET is associated with LC symptoms, chronotropic incompetence, and higher 21 

inflammatory markers and antibody levels in the early post-acute period, but not evidence of 22 
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myocarditis or arrhythmias. Further investigation into mechanisms of cardiopulmonary PASC 1 

should include evaluation of inflammatory pathways, chronotropic function, and the autonomic 2 

nervous system to identify therapeutic targets. 3 
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Tables: 1 

Table 1: Baseline Characteristics (n=60) 2 

  Symptoms (n=38) No Symptoms (n=22) 

Months since Infection, median (IQR) 17.7 (15.9, 19.4) 17.5 (15.8, 18.6) 
Age (years), median (IQR) 50.5 (40, 57) 54.5 (42, 61) 
Sex Male 19 (50%) 16 (73%) 

 Female 19 (50%) 6 (27%) 
Race/ Ethnicity Hispanic/Latino 10 (24%) 5 (22%) 

 White 26 (63%) 15 (65%) 

 Black/African American 2 (5%) 1 (4%) 

 Asian 2 (9%) 3 (7%) 
BMI (kg/m2), mean±SD 30.2±7.5 28.1±5.0 
Change in BMI from visit 1 to visit 2, mean±SD 1.18±1.4 1.32±2.1 
BMI Category 24.9 or less 10 (26%) 7 (32%) 

 25 to 29.9 11 (29%) 10 (45%) 

 30 to 34.5 9 (24%) 4 (18%) 
 35 or greater 8 (21%) 1 (5%) 
Medical History Hypertension 9 (24%) 5 (24%) 
 Diabetes 6 (16%) 1 (5%) 
 Asthma/COPD 10 (27%) 2 (10%) 
 HIV  10 (26%) 6 (27%) 

 Autoimmune Disease 3 (8%) 1 (5%) 
 Cancer 1 (3%) 1 (5%) 
 Kidney Disease 1 (3%) 0 (0%) 
 Former or Current Tobacco use 13 (34%) 3 (14%) 
Hospitalized 
(including ICU)  6 (16%) 2 (9%) 
ICU  2 (33% hospitalized) 0 

Table 1 Legend: Demographic information, past medical history, and severity of acute COVID-19 by 3 

hospitalization/ICU status of the participants who underwent advanced cardiopulmonary testing. Abbreviations: 4 

BMI=body mass index, ICU=intensive care unit, IQR=Interquartile Range 5 
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Table 2: Selected Cardiopulmonary Exercise Testing Parameters by Symptom Status (n=56) 1 

 Measure Symptoms 
(n=37) 

No 
Symptoms 
(n=19) 

Adjusted OR 
(95%CI; p value) 

Adjusted Difference 
(95%CI; p value) 

Exercise 
Capacity 

Peak VO2, 
ml/kg/min 22.7 ± 8.1 29.6 ± 7.0 

2.75 per -5 
ml/kg/min (1.39-
5.44; p=0.004) 

-5.2 (-8.3to -2.1; 
p=0.001) 

Peak VO2, % 
predicted 92.0 ± 22.0 107.3 ± 22.0 1.22 per -5% (1.04-

1.43; p=0.01) 
-17 (-30 to -4.3; 
p=0.01) 

Peak VO2, L/min 1.9 ± 0.6 2.4 ± 0.7 1.18 per -0.1/min 
(1.03-1.37; p=0.02) 

-0.41 (-0.73 to -0.09; 
p=0.01) 

Proportion 
<85% predicted 18 (49%) 3 (16%) 7.97 (1.56 to 40.8; 

p=0.01) -- 

Ventila-
tory  

Peak Respiratory 
Rate 37.5 ± 8.7    40.8 ± 9.7 0.95 (0.88-1.02; 

p=0.17) 
-3.8 (-10.0 to 2.4; 
p=0.23) 

Breathing Reserve 
(MVV-VEmax) 

44.5 (38.3, 
59.0) 

32.8 (24.0, 
44.8) 

1.04 (1.00-1.07; 
p=0.05) 

14.8 (0.7 to 29; 
p=0.04) 

Vent. Efficiency 
(VE/VCO2 slope)a 27.5 ± 3.7 25.8 ± 3.7 1.18 (0.98-1.44; 

p=0.09) 
2.0 (-0.4 to 4.4; 
p=0.10) 

Peripheral VO2 to Work 
slope 9.9±3.0 10.9±3.5 0.94 (0.76-1.17; 

p=0.60) 
-0.5 (-2.6 to 1.5; 
p=0.60) 

Cardiac  

VO2 pulse, 
ml/beat 13.1 ± 3.3 15.4 ± 4.5 0.85 (0.69-1.03; 

p=0.11) 
-1.6 (-3.8 to 0.5; 
p=0.13) 

SBP peak, mm Hg 173.9 ± 
31.7 189.2 ± 23.3 0.86 per 5 mm Hg 

(0.73-1.03; p=0.10) 
-13.2 (-31.3 to 4.8; 
p=0.15) 

Heart 
Rate 

Rest, bpm 78.3 ± 14.5 75.2 ± 10.4 1.01 (0.96-1.06; 
p=0.75) 

0.9 (-6.9 to 8.7; 
p=0.83) 

Peak, bpm 147.2 ± 
25.7 154.1 ± 21.7 0.97 (0.94-1.01; p = 

0.10) -9.3 (-21 to 2; p=0.11) 

Peak, % Age 
Predicted 86.2 ± 11.9 94.1 ± 9.3 0.92 (0.85-0.99; 

p=0.02) 
-8.5 (-15.2 to -1.8; 
p=0.02) 

Adjusted HR 
Reserve 
Achieved, %  

73.6 ± 22.0 84.9 ± 21.2 0.97 (0.94-1.00; 
p=0.05) 

-12.1 (-24.6 to 0.5; 
p=0.06) 

HR Recovery at 1 
min, bpm 14.4 ± 7.4 14.0 ± 10.0 1.04 (0.95-1.14; 

p=0.39) 
2.0 (-2.9 to 6.9; 
p=0.42) 

Exertion 

Work (Watts) 140.8 ± 
60.6 196.2 ± 68.2 

1.20 per -10 Watts 
(1.04 to 1.40; 
p=0.01) 

-49.6 (-86.2 to -13.0; 
p=0.009) 

Perceived 
Exertion, Borg 
Scale 6-20b 

16.2 ± 1.8 14.9 ± 2.2 1.64 (1.05-2.57; 
p=0.03) 

1.3 (0.1 to 2.6; 
p=0.03) 

Peak Respiratory 
Exchange Ratio 
(VCO2/VO2) 

1.18 (1.12, 
1.23) 

1.20 (1.12, 
1.30) 

1.01 per -0.1 (0.48-
2.12; p=0.98) 

0.03 (-0.09 to 0.02; 
p=0.23) 
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Table 2 Legend: We present both the odds ratios for the association between CPET parameters and symptoms 1 

estimated using logistic regression with adjustment for age, sex, time since COVID, hospitalization for acute 2 

COVID, BMI category and the estimated adjusted mean differences between those with and without symptoms 3 

using linear regression adjusting for the same covariates. Sensitivity analysis incorporating history of hypertension, 4 

diabetes, and lung disease had no substantive changes in effect sizes or confidence intervals. aVE/VCO2 slope could 5 

not be determined for one participant without symptoms. bBorg scale of perceived exertion was assessed every 2 6 

minutes; these represent the last measurement prior to test stopping. Bold text represents p<0.05. Abbreviations: 7 

AT=Anaerobic threshold; bpm=beats per minute; FVC=Forced Vital Capacity; HR=heart rate; DBP=diastolic blood 8 

pressure; MVV=maximal voluntary ventilation; SBP=systolic blood pressure; VD/VT=Dead space ratio; VE = minute 9 

ventilation; VCO2=carbon dioxide production; pVO2=peak oxygen consumption (VO2); Vent=Ventilatory. 10 
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Table 3. Cardiac Magnetic Resonance Imaging Parameters (n=41) by Symptom Status 1 

Meaning Parameter Symptoms 
(n=25) 

No 
Symptoms 
(n=18) 

Adjusted OR (95%CI; p value) 

Months since SARS-CoV-2 
Infection, mean±SD 

15.9±3.8 15.9±3.9 -- 

Hematocrit, mean±SD 43.0 ± 3.5   44.5 ± 4.1 0.86 (0.67 to 1.09; p=0.21) 

Body Surface Area, m2 1.95 ± 0.22 1.90 ± 0.16 1.26 per 0.1 m2 (0.74-2.17; p=0.38) 
Left 
Ventricular 
Size and 
Function 

LVEDi, ml/m2 63.6 ± 13.9 69.3 ± 12.3 0.97 (0.91-1.03; p=0.27) 
LVESi, ml/m2 24.4 ± 6.9 25.3 ± 7.0 1.00 (0.89-1.12; p=0.97) 
LVEF, % 61.8 ± 5.9 63.3 ± 5.8 0.93 (0.82-1.05; p=0.26) 
LV Mass 
Index, gm/m2 

47.6 ± 7.9 51.6 ± 7.6 0.98 (0.90 to 1.06; p=0.60) 

 Stroke 
Volume, mla 

77.2 ± 18.1 84.2 ± 18.1 0.97 (0.93-1.01; p=0.20) 

Right 
Ventricular 
Size and 
Function 

RVEDi, ml/m2 65.3 ± 13.5 75.6 ± 12.4 0.92 (0.86 to 0.99; p=0.02) 
RVESi, ml/m2 27.1 ± 6.4 31.3 ± 7.6 0.86 (0.75=0.99; p=0.04) 
RVEF, % 58.9 ± 5.0 58.4 ± 5.0 0.75 (0.86 to 1.14; p=0.93) 

Markers of 
Cardiac 
Inflammation 

T1 Native 
Mapping, ms  

1202 (1141, 
1253) 

1219 (1153, 
1248) 

1.00 (0.99-1.00; p=0.51) 

Post-Contrast 
T1 Mapping 
Time, ms 

603 (507, 
634) 

624 (577, 
655)  

1.00 (0.99 to 1.01; p=0.64) 

Extracellular 
Volume, % 

26.7 ± 6.3   24.2 ± 5.3 1.08 (0.92-1.26; p=0.35) 

T2 Native 
Mapping, ms 

46.5 (44.4, 
51.0) 

48.0 (44.0, 
51.4) 

0.97 (0.83-1.13; p=0.70) 

Cardiac 
Fibrosis 

LGE 0 0 -- 

Possible 
Pericardial 
Inflammation 

Pericardial 
Effusion 

6 (24%) 5 (22%) 0.47 (0.08-2.71; p=0.41) 

Table 3 Legend: CMR parameters by cardiopulmonary symptoms given as mean±SD or median (intraquartile 2 
range) for non-normally distributed variables. Logistic regression was used to estimated odds of having symptoms 3 
for a given change in each parameter adjusted for age, sex, BMI category, hospitalization, and time since infection. 4 
Only RV end diastolic and end systolic volume indices were associated with symptoms with larger RV size 5 
associated with lower odds of symptoms. Bold text represents p<0.05. Abbreviations: LVEDi=Left ventricular end 6 
diastolic volume indexed to body surface area; LVESi=Left ventricular end diastolic volume indexed to body 7 
surface area; LVEF=left ventricular ejection fraction; RVEDi=Right ventricular end diastolic volume indexed to 8 
body surface area; RVESi=Right ventricular end diastolic volume indexed to body surface area; RVEF=Right 9 
ventricular Ejection Fraction. LGE=Late Gadolinium Enhancement. aLV stroke volumes are reported but there is a 10 
high correlation between LV and RV stroke volumes (Pearson’s r=0.96).  11 
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Table 4: Ambulatory Rhythm Monitoring Findings by Symptoms (n=38) 1 

Parameter Symptoms 
(n=24) 

No 
Symptoms 
(n=14) 

Adjusted OR for 
symptoms (95%CI; p 
value) 

Adjusted OR for 
palpitations (95%CI; 
p value) 

Monitoring Time, 
days 

4 (3, 13) 8 (3, 13) --  

Average Heart 
Rate, bpm 

77.5 ± 11.4 74.4 ± 4.5 1.04 (0.96 to 1.14; 
p=0.34) 

1.11 (0.98-1.28; 
p=0.11) 

Minimum HR, 
bpm 

50.2 ± 12.5    44.9 ± 2.8 1.13 (0.96-1.33; 
p=0.13) 

1.38 (1.04-1.82; 
p=0.02) 

Maximum HR, 
bpm 

142.2 ± 
19.0 

157.4 ± 21.4 1.77 per -10 (1.03 to 
3.03; p=0.04) 

2.60 (1.07-6.34; 
p=0.04) 

Maximum HR, % 
predicted 

85.1 ± 9.1 94.9 ± 11.3 3.39 per -10 (1.09 to 
10.6; p=0.04) 

9.15 (1.14-72.9; 
p=0.04) 

Adjusted HRR 
achieved, % 

70.7 ± 19.7 89.9 ± 20.1 1.77 per -10 (1.09 to 
2.89; p=0.02) 

4.20 (1.34-13.2; 
p=0.01) 

Heart Rate 
Variability, 
SDNN 

143.5 
(113.3, 
185.5) 

155.7 
(137.0, 
177.0) 

1.00 per -10 (0.87 to 
1.16; p=0.97) 

1.91 (1.08-3.60; 
p=0.03) 

PAC, % burden  0.02 (0.01, 
0.10) 

0.01 (0.01, 
0.04) 

1.36 per 10-fold 
increase (0.58 to 3.20; 
p=0.48) 

1.05 (0.36-3.05; 
p=0.93) 

PVC, % burden 0.01 (0.01, 
0.15) 

0.01 (0, 
0.01) 

2.74 per 10-fold 
increase (1.14 to 6.53; 
p=0.02) 

2.20 (0.92-5.31; 
p=0.08) 

Sinus tachycardia, 
% burden 

7 (3, 13)  4 (3, 6) 1.15 (0.97 to 1.37; 
p=0.12) 

1.20 (1.00-1.43; p 
=0.05) 

Episodes of SVT* 
per week 

1.2 (0, 3.5) 0 (0, 3) 1.08 (0.91 to 1.28; p 
=0.39) 

1.15 (0.91-1.46; 
p=0.25) 

Episodes of 
Nonsustained VT 

0 1 --  

Button Pushes 2.5 (0.5,7) 1 (0, 2) 1.33 (1.00-1.76; 
p=0.05) 

1.13 (0.93-1.36; 
p=0.22) 

Table 4 Legend. Values are reported as mean±SD or median (interquartile range) for non-normally distributed 2 
variables assessed by histogram. Those with self-reported symptoms pressed the symptom button on the monitor 3 
more 3.2 times more often (95%CI 2.1-4.7; p<0.001). Bolded results are p<0.05. 4 

 5 
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Figures: 1 

Figure 1. Exercise Capacity by Symptoms and HR Response to Exercise (n=56) 2 

3 

Figure 1 Legend: Box and whisker plots of peak VO2 (ml/kg/min in Panel A and percent 4 

predicted in Panel B) among those without (blue) and with symptoms (pink) 17.6 months after 5 

SARS-CoV-2 infection (top). In Panel C peak VO2 in ml/kg/min is plotted by adjusted heart rate 6 

reserve (AHRR) to demonstrate the cluster of symptomatic individuals with low peak VO2 and 7 

chronotropic incompetence in the bottom left.  Panel D demonstrates CPET patterns among those 8 

with Long COVID symptoms: half achieved greater than 85% predicted peak VO2, and 9 

chronotropic incompetence was the most common pattern among those with reduced exercise 10 

capacity. 11 
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Figure 2. Heart Rate during Exercise by Chronotropic Response to Exercise  1 

2 

Figure 2 Legend: Mean heart rate is plotted as a function of exercise time normalized to percent 3 

of predicted peak VO2: in purple are those with normal exercise capacity (peak VO2 >85% 4 

predicted and normal heart rate response (n=16), in teal are those with normal exercise capacity 5 

(peak VO2>85%; n=8) and blunted heart rate response (AHRR<80%; n=8), and in yellow are 6 

those with chronotropic incompetence (n=9), as described in Supplemental Table 4. 7 
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Figure 3. Correlations between Peak VO2 and Previously Measured Biomarkers 1 

 2 

Figure 3 Legend. Scatterplots and linear trend lines of peak VO2 (measured at ~18 months) by 3 

natural log of previously measured biomarker levels with unadjusted Pearson’s rho correlations 4 

and p-values listed (top row, median 6 months after SARS-CoV-2 infection; bottom two rows 5 

median 3.5 months after SARS-CoV-2 infection). Prior hsCRP, IL-6, TNF and SARS-CoV-2 6 

receptor binding domain antibody levels were correlated with subsequent peak VO2. All 7 

antibody levels were measured prior to vaccination. 8 

 9 
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Figure 4. Change in Biomarkers Early Post-Infection by Eventual Exercise Capacity at 18 1 

months (n=35) 2 

3 

Figure 4 Legend: Mean ± standard error of the mean for serum biomarkers over time among 4 

those with reduced exercise capacity (red) and preserved exercise capacity (blue) measured at 5 

<90 days from SARS-CoV-2 acute infection (median 52 days from symptom onset) and between 6 

90-150 days (median 124 days from symptom onset) in 35 participants who underwent CPET. 7 

Inflammatory markers decreased over time, except for IL-6 among those with reduced exercise 8 

capacity. MCP-1, TNF, and IgG were higher early among those with reduced exercise capacity. 9 

TNF and IgG remained higher and GFAP became lower among those with reduced exercise 10 

capacity at the second time point. 11 
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