Abstract
Background Following mild traumatic brain injury (mTBI) compromised white matter structural integrity can result in alterations in functional connectivity of large-scale brain networks and may manifest in functional deficit including cognitive dysfunction. Advanced magnetic resonance neuroimaging techniques, specifically diffusion tensor imaging (DTI) and resting state functional magnetic resonance imaging (rs-fMRI), have demonstrated an increased sensitivity for detecting microstructural changes associated with mTBI. Identification of novel imaging biomarkers can facilitate early detection of these changes for effective treatment. In this study, we hypothesize that feature selection combining both structural and functional connectivity increases classification accuracy.
Methods 16 subjects with mTBI and 20 healthy controls underwent both DTI and resting state functional imaging. Structural connectivity matrices were generated from white matter tractography from DTI sequences. Functional connectivity was measured through pairwise correlations of rs-fMRI between brain regions. Features from both DTI and rs-fMRI were selected by identifying five brain regions with the largest group differences and were used to classify the generated functional and structural connectivity matrices, respectively. Classification was performed using linear support vector machines and validated with leave-one-out cross validation.
Results Group comparisons revealed increased functional connectivity in the temporal lobe and cerebellum as well as decreased structural connectivity in the temporal lobe. After training on structural connections only, a maximum classification accuracy of 78% was achieved when structural connections were selected based on their corresponding functional connectivity group differences. After training on functional connections only, a maximum classification accuracy of 69% was achieved when functional connections were selected based on their structural connectivity group differences. After training on both structural and functional connections, a maximum classification accuracy of 69% was achieved when connections were selected based on their structural connectivity.
Conclusions Our multimodal approach to ROI selection achieves at highest, a classification accuracy of 78%. Our results also implicate the temporal lobe in the pathophysiology of mTBI. Our findings suggest that white matter tractography can serve as a robust biomarker for mTBI when used in tandem with resting state functional connectivity.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of Louisiana State University Health Shreveport gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors