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Abstract 16 

Background: Following mild traumatic brain injury (mTBI) compromised white matter structural 17 

integrity can result in alterations in functional connectivity of large-scale brain networks and may 18 

manifest in functional deficit including cognitive dysfunction . Advanced magnetic resonance 19 

neuroimaging techniques, specifically diffusion tensor imaging (DTI) and resting state functional 20 

magnetic resonance imaging (rs-fMRI), have demonstrated an increased sensitivity for detecting 21 

microstructural changes associated with mTBI. Identification of novel imaging biomarkers can 22 

facilitate early detection of these changes for effective treatment. In this study, we hypothesize that 23 

feature selection combining both structural and functional connectivity increases classification 24 

accuracy.  25 

Methods: 16 subjects with mTBI and 20 healthy controls underwent both DTI and resting state 26 

functional imaging. Structural connectivity matrices were generated from white matter tractography 27 

from DTI sequences. Functional connectivity was measured through pairwise correlations of rs-fMRI 28 

between brain regions. Features from both DTI and rs-fMRI were selected by identifying five brain 29 

regions with the largest group differences and were used to classify the generated functional and 30 

structural connectivity matrices, respectively. Classification was performed using linear support 31 

vector machines and validated with leave-one-out cross validation.  32 

Results: Group comparisons revealed increased functional connectivity in the temporal lobe and 33 

cerebellum as well as decreased structural connectivity in the temporal lobe. After training on 34 

structural connections only, a maximum classification accuracy of 78% was achieved when structural 35 

connections were selected based on their corresponding functional connectivity group differences. 36 

After training on functional connections only, a maximum classification accuracy of 69% was 37 

achieved when functional connections were selected based on their structural connectivity group 38 
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differences. After training on both structural and functional connections, a maximum classification 39 

accuracy of 69% was achieved when connections were selected based on their structural 40 

connectivity. 41 

Conclusions: Our multimodal approach to ROI selection achieves at highest, a classification accuracy 42 

of 78%. Our results also implicate the temporal lobe in the pathophysiology of mTBI. Our findings 43 

suggest that white matter tractography can serve as a robust biomarker for mTBI when used in 44 

tandem with resting state functional connectivity. 45 

1 Introduction 46 

White matter fiber tracts constitute the structural pathways that interlink distinct brain regions, 47 

forming the anatomical backbone of structural connectivity networks (Wang, 2020). The integrity of 48 

white matter tracts is essential for normal brain function. These structural connectivity networks 49 

support functional interactions between brain areas and thus establish a structure-function 50 

relationship (Craddock et al. 2013). In mild traumatic brain injury (mTBI), traumatic insult to these 51 

structural networks results in axonal injury. As a result, compromised structural integrity can initiate 52 

compensatory changes in structural networks (Andriessen, 2010; Chatelin, 2011). This can cause 53 

collateral alterations in functional connectivity of large-scale brain networks. These abberant changes 54 

may manifest clinically with symptoms or impairments in cognitive, sensorimotor, or behavioral 55 

function (Harris, Verley, Gutman, Thompson, et al. 2016; Sinke et al. 2021). Therefore, mTBI results 56 

in a complex pattern of network dysfunction (Hayes, Bigler, and Verfaellie 2016; Mckee and 57 

Daneshvar 2015). 58 

Advanced neuroimaging techniques have been shown to capture network-level dysfunction in 59 

mTBI. Diffusion tensor imaging (DTI) has demonstrated an increased sensitivity for detecting 60 

microstructural changes, such as DAI (Puig et al. 2020). DTI generates signal contrast when proton 61 

diffusion is anisotropic, appropriate for visualizing a highly organized fiber structure. Random and 62 

isotropic diffusion of protons, reflective of unrestricted water dispersion due to loss of white matter 63 

integrity, results in the loss of signal contrast (Harris, Verley, Gutman, and Sutton 2016; Hayes, 64 

Bigler, and Verfaellie 2016). Furthermore, diffusion tractography has been shown to adequately 65 

quantify structural connectivity. However, literature reports DTI tractography to both underestimate 66 

and overestimate white matter fiber connections by inadequately quantifying weak long-range 67 

connections as well as over quantifying spurious connections, increasing both false-negative and 68 

false-positive results, respectively (Chu, Parhi, and Lenglet 2018; R. E. Smith et al. 2012).  69 

Network alterations following mTBI have also been investigated using functional magnetic 70 

resonance imaging (fMRI) and is well reported in the literature (Mayer et al. 2011; Stevens et al. 71 

2012; Palacios et al. 2017; Iraji et al. 2015). Resting state functional magnetic resonance imaging (rs-72 

fMRI) quantifies blood oxygen levels as a surrogate marker of brain activity, and functional 73 

connectivity measures the temporal correlation between different brain regions in resting state brain 74 

networks (Sharp et al. 2011; Biswal et al. 1995). rs-fMRI analysis of mTBI has characterized 75 

alterations in functional activity potentially due to direct injury of functional networks or remodeling 76 

following traumatic insult (Mayer et al. 2011). 77 

Recent studies have shown that multimodal methods combining structural and functional 78 

information, quantified by DTI tractography and rs-fMRI, can better detect compromised network 79 

integrity (Chu, Parhi, and Lenglet 2018). Multiple studies have reported on the relationship between 80 
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structural and functional connectivity in mild TBI (Harris, Verley, Gutman, and Sutton 2016; Harris, 81 

Verley, Gutman, Thompson, et al. 2016; Iraji et al. 2016a; Tang et al. 2012). A study by Sharp et al. 82 

in 2011 reported decreased functional connectivity in the default mode network (DMN) in mTBI 83 

subjects with decreased structural connectivity (Sharp et al. 2011). Palacios and colleagues reported 84 

an inverse relationship, exhibiting decreased structural connectivity and increased functional 85 

connectivity in regions in the frontal lobe in chronic traumatic brain injury subjects. (Palacios et al. 86 

2013a).  87 

The emergence of large, multimodal datasets has enabled the use of multivariate statistical 88 

modeling techniques known as “machine learning” to both predict pathologic conditions as well as 89 

extract potential biomarkers. Machine learning has been used on single imaging modalities such as 90 

DTI tractography (Mitra et al. 2016) has also achieved strong classification performance on larger 91 

datasets combining T1 weighted MRI and other advanced imaging sequences (Lui et al. 2014). 92 

However, not all studies have found success in classification with multimodal imaging data. Vergara 93 

et al found that combining both structural and functional connectivity reduced classification 94 

performance (Vergara et al. 2017).  95 

In our study, we quantified changes in functional and structural connectomes between mTBI 96 

and healthy controls. We showed that group differences in functional connectivity can help identify 97 

structural connections predictive of mTBI. To this end, we trained a multivariate machine learning 98 

algorithm to classify subjects with mTBI from healthy controls. We found that feature selection using 99 

multimodal imaging improved classification accuracy. Through this method, we were able to identify 100 

a set of brain regions that are particularly vulnerable to mTBI.  101 

2 Methods 102 

2.1 Subjects 103 

A retrospective chart review was conducted to identify patients with mTBI who underwent 104 

neuroimaging at LSUHSC between September 2015 and June 2017. For the control cohort, subjects 105 

with matched acquisition parameters were identified from an in-house normal control database and 106 

utilized for this study. Approval for this study was granted by Louisiana State University Health 107 

Sciences Center (LSUHSC) Institutional Review Board (IRB). Brain images of thirty-three subjects 108 

with mTBI and thirty-four healthy controls were used in the study. After removing subjects whose 109 

scans were affected by artifacts, sixteen subjects with mTBI and twenty control subjects were 110 

included in this analysis. Age and sex of mTBI and control subjects were compared using 111 

independent two-tailed t-tests with the SciPy library in Python (Jones, Oliphant, and Peterson 2001; 112 

Rossum and Drake 1995).  113 

2.2 Image Acquisition 114 

In this study, all MRI scans were acquired on a single 1.5 T clinical MR systems (GE Medical 115 

Systems, Milwaukee, WI, USA). The MRI examination included a high resolution, non-contrast 116 

enhanced T1-weighted sequence (TR/TE 9.644/3.82, 90° flip angle, 256 × 256 matrix size, 1.2-mm 117 

slice thickness), diffusion tensor sequence (An optimized TE, 90° flip angle, 256 × 256 matrix size, 118 

field of view 28 cm, 5-mm slice thickness, 1 mm spacing, axial slice orientation, 36 directions, b-119 

values, 1000; NEX, 1), and EPI-BOLD functional MRI sequence (TR/TE 3,000/60, 64 × 64 matrix 120 

size, 5-mm slice thickness, 5 min 12 sec, 104 whole brain resting state acquisition, where the first 4 121 
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were discarded). Retrieved DICOM images for eligible participants were converted to NIFTI format 122 

using MRIcron (www.mccauslandcenter.sc.edu/crnl/mricron/).  123 

Using 3D Slicer version 4.1.1 (http://www.slicer.org), T1 scans were registered to the 124 

baseline DTI volume and saved in the NIfTI (.nii) format (See supplementary material for details) 125 

(Andriy et al. 2012). BrainSuite version 16a1 was used to generate brain masks from T1 sequences 126 

(www.brainsuite.org).  127 

The brain masks were manually edited within BrainSuite by 4 individuals who checked each 128 

other’s work to ensure high quality. 129 

2.3 fMRI Preprocessing 130 

Preprocessing of fMRI scans was done using the default pipeline in the CONN-fMRI 131 

Functional Connectivity toolbox, which implements SPM12 (Whitfield-Gabrieli and Nieto-Castanon 132 

2012; Friston 2007). The preprocessing steps were functional realignment and unwarping, slice-133 

timing correction, outlier identification, direct segmentation and normalization, and functional 134 

smoothing. Data was transformed to the Montreal Neurological Institute standard space at a 135 

resolution of 2 x 2 x 2 mm3. Data was smoothed with an 8 mm full width at half maximum (FWHM) 136 

kernel. Images with a framewise displacement above 0.9mm or BOLD signal changes 5 standard 137 

deviations above the global mean were flagged as outliers.  138 

2.4 Establishing Nodes for the Connectome 139 

The Harvard-Oxford cortical atlas and AAL subcortical atlas was imported from CONN into 140 

BrainSuite, which contained Brodmann areas from the Talairach Daemon atlas (www.talairach.org) 141 

along with four Fox nodes that were brought into MNI-space through a Lancaster transform 142 

(Whitfield-Gabrieli and Nieto-Castanon 2012). In CONN, the global signal was regressed. This atlas 143 

defined 132 regions of interests (ROIs), i.e., nodes. MNI coordinates for all nodes are listed in Table 144 

S1. These nodes are used to estimate both structural and functional connectivity metrics. From these 145 

structural and functional connectivity metrics, connectivity matrices were then computed among the 146 

nodes. 147 

2.5 Computing Functional Connectivity Matrix from rs-fMRI 148 

T1 weighted and rs-fMRI sequences were preprocessed within the open-source software 149 

package, CONN, using Statistical Parametric Mapping software (SPM12, Wellcome Department of 150 

Imaging Neuroscience, Institute of Neurology and the National Hospital for Neurology and 151 

Neurosurgery; London, England). As shown in Figure 1, CONN was utilized to analyze FC based on 152 

the rs-fMRI sequences within nodes that were segmented based on the high-resolution T1 anatomical 153 

image (Whitfield-Gabrieli and Nieto-Castanon 2012). The FC strength between nodes was 154 

determined by a Fischer transform correlation coefficient within CONN, which measures the 155 

correlation of BOLD signals between the two nodes. Connectivity matrices containing these 156 

correlation coefficients for each node-to-node were exported from CONN. 157 
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Figure 1. Workflows for generating functional and structural connectivity matrices. 

2.6 Preprocessing DTI 158 

Voxel-wise statistical analysis of the fractional anisotropy (FA) data was carried out using 159 

TBSS (Tract-Based Spatial Statistics, (S. M. Smith et al. 2006)), part of FSL (S. M. Smith et al. 160 

2004). First, FA images were created by fitting a tensor model to the raw diffusion data using FDT, 161 

and then brain-extracted using BET (Smith 2002). FA data extracted from every DTI sequence from 162 

our cohort were then aligned into a common space using the nonlinear registration tool FNIRT 163 

(Andersson 2007a; Andersson 2007b), which uses a b-spline representation of the registration warp 164 

field (Rueckert et al. 1999). Next, the mean FA image was created and thinned to create a mean FA 165 

skeleton which represents the centers of all tracts common to the group. Each subject's aligned FA 166 

data was then projected onto this skeleton and the resulting data fed into voxel-wise cross-subject 167 

statistics. 168 

2.7 Computing Structural Connectivity from DTI 169 

T1-weighted anatomical images were semi-automatically skull-stripped with BrainSuite’s 170 

Brain Extraction Sequence and automatically co-registered to the CONN atlas with BrainSuite’s 171 

surface volume registration (Shattuck and Leahy 2002). Using the BrainSuite Diffusion Pipeline, FA 172 

maps were derived from the DTI images and were co-registered with the T1-weighted anatomical 173 

image for each subject. Using BrainSuite’s diffusion toolbox, SC between the 132 ROIs was found 174 

based upon the DTI deterministic local tractography with a step-size of 0.25 mm using angular and 175 

FA thresholds of 35 degrees and 0.2, respectively (Hu et al. 2012; Ni et al. 2011; Min et al. 2014). 176 

The maximum number of steps was 500. The FA threshold ensures the tractography is based on 177 
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white matter tracts which have high FA values as opposed to gray matter. The stop angle prevents the 178 

generation of fiber tracts that have a bend less than 35 degrees between any two consecutive points. 179 

The strength for a given structural connection was denoted by the number of fiber tracts that connects 180 

a particular node to another. Connectivity matrices containing the number of fiber tracts between 181 

each node-to-node connection were exported from BrainSuite (Shattuck et al. 2013). 182 

2.8 Network Connectivity Group Comparison 183 

In order to compare differences in structural and functional connectivity between mTBI and 184 

HC, we performed unthresholded independent two-sample t-tests on the connectivity matrices 185 

between mTBI and control groups using the SciPy python library (Jones, Oliphant, and Peterson 186 

2001). In section 3.2, we show the t-scores from the comparison between mTBI and HC of each 187 

connection in both functional and structural connectomes. When performing feature selection for 188 

machine learning analysis, we employed the same method to compare groups but only compared 189 

subjects within a given training fold (see section 2.8). 190 

2.9 Machine Learning Classification 191 

In order to differentiate between mTBI and HC brain networks, we employed linear Support 192 

Vector Machine (SVM) models trained on the connectivity matrices from groups. We validated our 193 

model using a leave-one-out cross-validation (LOOCV) approach, where we repeatedly trained the 194 

SVM on all but one held-out subject. The predictions of the held-out subject data were then 195 

concatenated and compared to the true class labels. In order to maximize classification performance, 196 

we used statistical group comparisons to select a subset of network connections for classification 197 

within each cross-validation training fold. The entire analysis was repeated 20 times in order to verify 198 

the stability of predictions. All analysis was written in Python using the Sci-Kit Learn library 199 

(Rossum and Drake 1995; Pedregosa et al. 2011). 200 

 

 Figure 2: Leave-one-out cross validation procedure (LOOCV). Every test split (or “fold”) contains a single subject. The support 

vector machine (SVM) classifier is trained on all other subjects, and then the classifier predicts the probability of mTBI for the 
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single held-out test sample. The data is repeatedly split so that every subject is used as a held-out test sample. Once the probability 

of mTBI has been predicted for all test samples, a probability threshold is selected such that test samples with predicted 

probabilities above the threshold are classified as mTBI and those with probabilities below the threshold are classified as HC. These 

classifications are compared to the ground truth class labels for each test sample, and the probability threshold is adjusted such that 

classification accuracy is maximized and sensitivity is non-zero. Figure adapted from (Shalbaf et al. 2020). 

2.10 Selecting Network Connections for Classification 201 

As shown in Figure 3, we first separately performed t-tests on structural and functional 202 

connectivity matrices between each group for all samples within a given training data set. We then 203 

measured the t-score of the group difference for each network connection. Next, we separately 204 

 

Figure 3: Here we depict our feature selection method for classification. Within each training fold, we performed group 

comparisons on either functional or structural connectivity matrices. We then identified the connections with the highest t-scores. 

Next, we selected those connections from either the structural or functional connectivity matrices—or both matrices—for 

classification. For example, in A, we performed a group comparison of functional connectivity matrices between mTBI and 

Control subjects, identified the functional connections with the highest t-scores, and then trained an SVM classifier on those 

respective structural connections to discriminate between mTBI and Control subjects. Artificially generated data is shown in the 

classification figures to demonstrate our methodology. 
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ranked functional and structural network connections according to their t-score. We then performed 205 

stepwise feature selection on the training data set, measuring the classification performance of the 206 

SVM trained on the network connections with the top N t-scores—where N increased between 1 and 207 

20. When selecting features to classify the single held-out test sample, we selected the N connections 208 

that yielded the highest AUC in the training fold.  209 

In total, there were 6 combinations of feature selection methods. They are listed as follows: 210 

(1) perform a t-test on functional connectivity matrices, identify N connections with the highest t-211 

scores, and select those corresponding functional connections for classification. (2) perform a t-test 212 

on functional connectivity matrices, identify N connections with the highest t-scores, and select those 213 

corresponding structural connections for classification. (3) perform a t-test on functional connectivity 214 

matrices, identify N connections with the highest t-scores, and select those corresponding functional 215 

and structural connections for classification. (4) perform a t-test on structural connectivity matrices, 216 

identify N connections with the highest t-scores, and select those corresponding functional 217 

connections for classification. (5) perform a t-test on structural connectivity matrices, identify N 218 

connections with the highest t-scores, and select those corresponding structural connections for 219 

classification. (6) perform a t-test on structural connectivity matrices, identify N connections with the 220 

highest t-scores, and select those corresponding functional and structural connections for 221 

classification. 222 

After classification analysis, we identified the 10 connections that were most frequently 223 

selected by the feature selection method that yielded the highest classification accuracy. We counted 224 

the number of times each of the 10 connections were selected. Next, we plotted the connections using 225 

the Nibabel 3.2.1 python package (Gramfort et al. 2014).  226 

2.11 Performance Evaluation 227 

For each LOOCV split, we recorded the predicted probability of mTBI for the held-out test 228 

sample. Next, we concatenated the 36 probabilities and used them to generate a ROC curve and 229 

evaluated the AUC. We then identified the optimal probability threshold that yielded the best 230 

accuracy and non-zero sensitivity. Among the predicted probabilities for the 37 test-samples, we 231 

classified probabilities above the selected threshold as “mTBI” and probabilities below this threshold 232 

as “Control”. Next, we compared these classifications to the actual class labels and reported the 233 

accuracy, sensitivity, specificity, and F1-score. After evaluation, we compared the AUC metrics of 234 

the best and second-best performing feature selection methods across repeated instantiations using an 235 

independent two-tailed t-test implemented using the SciPy library (Jones, Oliphant, and Peterson 236 

2001). 237 

2.12 DTI Classification 238 

After performing feature selection on the structural and functional connectivity matrices, we 239 

determined the ROIs that participated in the most predictive connections. We then classified FA 240 

voxels within those ROIs. We classified both FA voxels as well as the mean FA values within a 241 

given ROI. 242 

3 Results 243 

3.1 Subject Data 244 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.21267815doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.14.21267815
http://creativecommons.org/licenses/by/4.0/


Multimodal Classification of Mild Traumatic Brain Injury Reveals Local Coupling Between Structural and 

Functional Connectomes 

 
9 

Table 1: Patient demographics across controls and subjects with mild traumatic brain injury (mTBI) 

[N=36] 

Age (in years) Control (n=20) mTBI (n=16) p-value 

Mean ± SD 26.5 ± 4.15 43.65 ± 8.37 < 0.001 

95% CI for 

Mean 
24.51─28.50 39.21─48.08   

Median (IQR) 26.0 (4.5) 46.0 (12.0)   

        

Sex, n(%)     0.88 

Male 12 (60.0%) 10 (62.5%)   

Female 8 (40.0%) 6 (37.5%)   

Sixty-seven adult subjects (>18 years of age) each had MR exams acquired at our institution with the 245 

same acquisition protocol (Table 1). The MR acquisition protocol included rs-fMRI, DTI, and high-246 

resolution non-contrast T1 anatomical image. Subjects whose ages were greater than 2.5 standard 247 

deviations from the mean group age or whose images were distorted by motion artifacts were 248 

excluded from our analysis. Twenty healthy subjects from our control database served as the control 249 

group and sixteen subjects with mTBI formed the pathological group. Demographics collected on 250 

eligible subjects included age and gender. The control group’s age was 26.5 ± 4.15 years (range: 22-251 

40 years) and included 12 males and 8 females. The mTBI group’s age was 43.65 ± 8.37 years 252 

(range: 27-61 years) and included 10 male and 6 females. Statistical comparisons revealed that the 253 

mTBI and control groups differed in age (p<0.001) but not in sex (p=0.88).  254 

3.2 Structural and Functional Connectivity Group Comparisons 255 

A

 

B 

 

Figure 4: Shown here are the top 10 connections with highest absolute differences between mTBI and 

control groups estimated via two-tailed t-tests in both functional connectivity (A) and structural 
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connectivity (B). In each subplot, the identified connections were viewed in coronal, sagittal and axial 

projections from left to right. 

Table 2: Connections with 10 highest t-scores 

Top Functional Connections     

ROI ROI t-

scor

e 

Middle Frontal Gyrus Right Angular 

Gyrus Right 
4.05 

Temporal Pole Left Frontal Pole 

Right 
-

4.01 

Angular Gyrus Left Inferior 

Frontal 

Gyrus, pars 

triangularis 

Right 

-

4.02 

Inferior Temporal Gyrus, posterior division Righ' Middle 

Temporal 

Gyrus, 

temporoocci

pital part 

Left' 

-

4.04 

Inferior Temporal Gyrus, posterior division Right Middle 

Frontal 

Gyrus Left 

-

4.09 

Lateral Occipital Cortex, inferior division Righ' Cerebellum 

Crus1 Left 
-

4.25 

Angular Gyrus Left Vermis 4 5 -

4.29 

Caudate Right Cerebellum 8 

Left 
-4.3 

Pallidum Right Frontal Pole 

Right 

-

4.31 

Occipital Pole Left Cerebellum 

Crus1 Left 
-

4.38 
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Top Structural Connections 

ROI ROI t-

scor

e 

Superior Frontal Gyrus Left Putamen Left 5.11 

Amygdala Right Thalamus 

Right 
4.76 

Pallidum Left Superior 

Frontal 

Gyrus Left 

4.6 

Superior Parietal Lobule Right Insular 

Cortex Right 
4.52 

Parahippocampal Gyrus, posterior division Left Precuneous 

Cortex 
4.46 

Occipital Pole Right Middle 

Temporal 

Gyrus, 

anterior 

division 

Right 

4.45 

Lingual Gyrus Left Lateral 

Occipital 

Cortex, 

inferior 

division Left 

4.25 

Lateral Occipital Cortex, superoir division Right Superior 

Parietal 

Lobule Right 

4.24 

Temporal Pole Left Superior 

Frontal 

Gyrus Left 

4.2 

Cingulate Gyrus, posterior division Frontal 

Medial 

Cortex 

4.19 
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Before performing machine learning analysis, we compared the functional and structural 256 

connectomes of subjects with mTBI to healthy controls to find connections that differed between the 257 

two groups. 258 

Nine of the ten functional connections with the highest magnitude t-scores were decreased in 259 

connectivity in mTBI compared to control. These connections existed between areas in the frontal 260 

lobe, temporal lobe, and cerebellum (Table 2). In contrast, all ten structural connections with the 261 

highest t-scores were increased in connectivity in mTBI compared to control and existed between 262 

areas in the frontal and temporal lobes (Table 2). 263 

3.3 Functional differences indicate structural alterations in mild TBI 264 

Table 3: Performance metrics of different feature selection methods 

Feature selection 

connectome 
Functional Structural 

Classification 

connectome 
Structural Functional 

Functional 

& 

Structural 
Structural Functional 

Functional 

& 

Structural 

Area Under ROC Curve 

(AUC) 
0.74 0.59 0.62 0.33 0.64 0.46 

Accuracy 0.78 0.64 0.69 0.56 0.69 0.61 

F1 0.74 0.65 0.65 0.12 0.70 0.44 

Sensitivity 0.69 0.69 0.69 0.06 0.75 0.38 

Specificity 0.8 0.65 0.75 0.95 0.7 0.8 

 265 
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Figure 5: Here, we show the ROC curves for SVM classifiers trained according to the six different feature selection methods. We 

found that classifying the structural connections whose respective functional connections were the most different between mTBI 

and control yielded the highest classification performance. 

 266 

 267 
Next, we sought to determine which subset of structural and/or functional connections are most 268 

predictive of mild TBI. To this end, we trained separate linear support vector machines on subsets of structural 269 
and functional connections and determined the model’s performance. We selected subsets of connections 270 
based on the functional and structural connectivity group comparisons between mTBI and control subjects. 271 
Within each training-set, we identified connections with the highest t-score for each modality (fMRI and DTI), 272 
and then classified using the connectivity values of these connections for each imaging modality separately as 273 
well as together.  274 

When classifying with structural connections (Figure 5), we found classification performance was 275 
highest when structural connections were selected according to the functional connectivity group comparison 276 
(Table 3). Classification performance decreased when classifying functional connections selected according to 277 
the functional connectivity group comparison. Classifying both structural and functional connections that were 278 
selected according to the functional group comparison yielded a similar classification performance as when 279 
classifying functional connections alone. 280 
Conversely, we found that classification performance was higher when classifying functional connections 281 
compared to classifying structural connections identified from the structural connectivity group comparison 282 
(Table 3). Classifying both structural and functional connections yielded a similar performance as when 283 
classifying with functional connectivity alone. 284 
 285 

 

Figure 6: Shown are distributions of AUC accuracy values for SVM classifiers trained according 

to each of the six feature selection methods. In order to determine whether the differences in 

classification performance across the feature selection methods were due to random initializations 

of the SVM classifier, we repeated the entire training process 20 times. We found that selecting 
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structural connections for classification based on the FCM group comparison yielded the highest 

classification accuracy measured by area under the ROC curve (AUC).  

* - statistical comparison where p < 0.05. 

 286 

In order to determine if the differences in classification accuracy imparted by each feature 287 

selection method were stable across different random SVM initializations, we repeated each 288 

classification strategy 20 times. In Figure 3, we show the distribution of classification accuracies 289 

measured by AUC. Our results suggest that classifying structural connections selected by functional 290 

connectivity group differences consistently resulted in a higher classification accuracy. In 291 

comparison to the second-best performing feature selection method, classification of structural 292 

connections selected by functional connectivity group differences yielded a significantly higher AUC 293 

(p<0.05). 294 

3.4 Mild TBI results in altered connectivity in the frontal and temporal lobes and cerebellum 295 

 

Figure 7: Here, we plotted the functional connectivity t-scores of the top 10 most frequently selected 

connections for classification. Discriminative connections were primarily between areas in the frontal 

lobe, temporal lobe, and cerebellum. In each subplot, the identified connections were viewed in coronal, 

sagittal and axial projections from left to right. 

 296 

Table 3: T-scores of most predictive functional connections identified by classification 

ROI 

Middle Frontal Gyrus Right ROI 

t-

scor

e 

Inferior Temporal Gyrus, posterior 

division Right Angular Gyrus Right 4.05 

Lateral Occipital Cortex, inferior 

division Right 
Middle Temporal Gyrus, 

temporooccipital part Left 
-

4.01 
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Angular Gyrus Left Cerebellum Crus1 Left 
-

4.02 

Angular Gyrus Left Vermis 4 5 
-

4.04 

Pallidum Right 
Inferior Frontal Gyrus, pars triangularis 

Right 
-

4.09 

Caudate Right Frontal Pole Right 
-

4.25 

Middle Frontal Gryus Left Cerebellum 8 Left 
-

4.29 

Supramarginal Gyrus, anterior division 

Left Pallidum Left -4.3 

'Temporal Pole Left' 
Lateral Occipital Cortex, inferior 

division Left 
-

4.31 

During classification, we counted the number of times each connection was selected for 297 

classification during our stepwise feature selection procedure. Next, we plotted the top 10 most 298 

frequently selected connections. Many of the ROIs that participated in these top-10 connections were 299 

in the frontal and temporal lobes. Additionally, ROIs were in the Angular Gyrus, Supplementary 300 

Motor Cortex, and Cerebellum (Table 2).  301 

3.5 FA Classification 302 

A 

 

B 

 

Figure 8: Here, we show the ROC curves and AUC accuracy metrics for SVM classifiers trained according to the best of the six 

feature selection methods as well as FA voxels and mean FA values. We determined whether structural connections, which are 

measured by diffusion tractography, are more predictive of mTBI than FA voxels or mean FA values within a given ROI. We 

created masks of the ROIs participating in the top 5 most frequently selected structural connections for classification (Table 3) and 

masked the FA data for all subjects. We compared the classification accuracy of the best performing feature selection method 
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(classifying SCM selected according to FCM group comparison) to SVMs trained on all FA voxels in the selected ROIs as well as 

the average FA values of each ROI. In A, we show the ROC curves generated by the trained SVM classifiers, and in B we show the 

AUC performance metric measured across 20 different random initializations of SVM classifiers. We found that classifying an 

optimal subset of structural brain connections measured by diffusion tractography resulted in substantially better performance than 

classifying diffusions metrics. 
* - statistical comparison where p < 0.001. 

 303 

We also compared classification performance of an SVM built on FA voxels and average FA 304 

values within the ROIs of the top 5 most frequently selected brain connections for SCM classification 305 

(Table 3). First, we performed an independent 2-tailed t-test of FA values between mTBI and 306 

controls and found no significant differences. Next, we found that classifying on FA values 307 

consistently yielded poor classification performance (Figure 8), which suggests that differences in 308 

brain structure after mTBI are more easily identified with large-scale measures such as tractography. 309 

In comparison to directly classifying FA voxels, classification of structural connections selected by 310 

functional connectivity group differences yielded a significantly higher AUC (p<0.001). 311 

4 Discussion 312 

In this study, we applied a machine learning algorithm to classify subjects with mTBI from 313 

healthy controls using multimodal neuroimaging sequences and identified structural and functional 314 

networks that are altered in mTBI. Results from our functional connectivity analysis revealed a 315 

widespread hyperconnectivity and localized hypoconnectivity within the inferior temporal gyrus, 316 

brain stem, and cerebellum in mTBI subjects compared to healthy controls. Analysis of structural 317 

connectivity revealed widespread decreases and localized increases within the frontal and temporal 318 

cortical areas and several subcortical regions including the thalamus, cerebellum, and vermis. 319 

Using a linear support vector machine validated by leave-one-out cross validation, we 320 

achieved a maximum classification accuracy of 78%. Our results show that structural connections 321 

across the frontal lobe, temporal lobe, supplemental motor area, and cerebellum were the most 322 

discriminative of mTBI (Figure 7; Table 3). Interestingly, our feature selection method revealed that 323 

the structural connection regions whose respective functional connections exhibited the largest 324 

differences between mTBI and control were the most predictive of mTBI. (Figure 4; Table 2). This 325 

suggests that changes in structural connectivity caused by mTBI may be identified by differences in 326 

functional connectivity. 327 

4.1 Comparison to Current Literature 328 

Although functional connectivity was increased in mTBI patients compared to control as 329 

demonstrated by qualitative inspection, the functional connections with the largest differences were 330 

decreased in mTBI. While past literature suggests that mTBI results in functional hyperconnectivity 331 

(Hayes, Bigler, and Verfaellie 2016), several studies have suggested that the direction of connectivity 332 

changes may be dependent on the phase of recovery from mTBI, and that functional 333 

hypoconnectivity is an early response to injury (Dall’Acqua et al. 2017; Zhu et al. 2015; Iraji et al. 334 

2015). 335 

Conversely, we found that the largest differences in structural connectivity were positive, 336 

while most other differences in structural connectivity were negative. Increases in structural 337 

connectivity among a small subset of network connections has been attributed to the “rich-club” 338 
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hypothesis, whereby injury to tertiary nodes triggers a rerouting of neural architecture towards more 339 

central network hubs (Dall’Acqua et al. 2017; Heuvel and Sporns 2011)  340 

(Mitra et al. 2016)Previous studies have analyzed unimodal neuroimaging datasets to 341 

discriminate mTBI from healthy control. A study that attempted classification on unimodal datasets 342 

to detect mTBI via structural connections was by (Mitra et al. 2016). The authors achieved a 343 

classification accuracy of 68%. In contrast, our method demonstrated that multimodal imaging 344 

increased classification accuracy up to 78%. 345 

Previous studies have shown that classification analysis using multimodal datasets either 346 

decrease classification performance (Vergara et al., 2016), or cannot identify a specific set of network 347 

connections predictive of mTBI (Sinke et al, 2021). However, our approach demonstrates that DTI 348 

and fMRI can be combined to yield high classification performance. Specifically, we showed that 349 

group differences in functional connectivity could be used to identify structural features predictive of 350 

mTBI. Our high classification performance was enabled by our novel multimodal feature selection 351 

method, which reduced the number of structural connections for classification. 352 

An important component of our feature selection method was the identification of group 353 

differences in functional connectivity. It is well known that mTBI affects resting state functional 354 

connectivity and has been reported frequently in past literature (Mayer et al. 2011) (Stevens et al. 355 

2012) (Palacios et al. 2017) (Iraji et al. 2015). 356 

In comparison to fractional anisotropy (FA), we found that structural connectivity measured 357 

by tractography is more predictive of mTBI. Interestingly, this suggests that despite mTBI being 358 

normally associated with the cellular-level damage, metrics that capture fine-grain differences in 359 

white matter integrity are less predictive of mTBI. Instead, coarse-grained diffusion tractography 360 

captured network-level reorganization in patients with mTBI. This suggests that network-level 361 

analysis may yield more sensitive biomarkers to mTBI in comparison to diffusion tensor metrics. 362 

Additionally, our corroborate past results from Iraji et al who showed that traumatic brain injury 363 

results in connectome-scale reorganization (Iraji et al. 2016b). Finally, FA can be distorted by edema 364 

or other microenvironmental changes that are unrelated to white matter structural integrity. 365 

4.2 Structural and Functional Connectivity Alterations in mTBI 366 

Our multimodal approach using both DTI and rs-fMRI allowed us to assess the relationship 367 

between alterations in structural and functional connectivity in mTBI (Hayes, 2016). Specifically, we 368 

found that network connections with altered functional connectivity also exhibit structural 369 

connectivity that is predictive of mTBI. Relationships between structural and functional connectivity 370 

have been identified in past literature and are termed “structure-function coupling” (Honey et al. 371 

2009). In mTBI, disruption or “decoupling” between structural and functional connectomes has been 372 

associated with clinically relevant symptoms such as cognitive sensorimotor and behavioral 373 

impairments (Harris, Verley, Gutman, Thompson, et al., 2016; Sinke et al., 2021).   374 

The literature has reported varying effects of mTBI on structural-functional coupling. Several 375 

studies have found positive correlations between changes in structural and functional connectivity in 376 

mTBI (Palacios et al. 2013b) (Zhang et al. 2010) (Sharp et al. 2011). Other studies have either found 377 

that both structural and functional connectivity is decreased or that an inverse relationship between 378 

the two connectomes occurs in mTBI. Wang et al found a negative correlation between structural and 379 

functional connectivity in mTBI (Wang et al. 2021)Rajesh et al found mTBI was associated with 380 
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functional hypo-activation across the default mode network, which corroborates the decrease in 381 

functional connectivity among the most predictive connections in our study (Rajesh et al. 2017). 382 

Tang et al also identified an inverse relationship between fractional anisotropy and default mode 383 

network functional connectivity (Tang et al. 2012).Other studies have either found that both 384 

structural and functional connectivity is decreased or that mTBI exhibits an inverse relationship 385 

between the two connectomes. (Wang et al. 2021)(Rajesh et al. 2017) (Tang et al. 2012) 386 

In contrast, our results indicate a more local relationship between structural and functional 387 

connectivity, whereby physical injury to structural connections between the frontal lobe and temporal 388 

lobes results in altered functional connectivity among those same connections. Our findings have 389 

been corroborated by Iraji et al, who identified the same “landmark” structural connections that also 390 

exhibited functional alterations (Iraji et al. 2016b). Other studies have also reported local differences 391 

in functional and structural connectivity in mild TBI (Harris, 2016) (Sharp, 2011). 392 

We found that structural connections across the frontal and temporal lobes were predictive of 393 

mTBI. Interestingly, both the temporal and frontal lobes are particularly vulnerable to injury due to 394 

its sensitivity to inertial forces, which has been demonstrated in numerous human and animal studies 395 

(Bigler 2007; Kampfl et al. 1998; Kotapka et al. 1991; Smith et al. 1997; Cullen et al. 2016) 396 

A possible mechanism behind the alterations to structure-function coupling after mTBI has 397 

been proposed by Kuceyeski et al in 2019. The authors suggest that increased structural and 398 

functional network changes are a compensatory response to mTBI (Kuceyeski et al. 2019). Future 399 

studies can explore the mechanisms underlying network reorganization after mild TBI. 400 

5 Limitations and Future Directions 401 

Our study has several limitations. First, subjects with TBI can suffer injury to any nonspecific 402 

brain area. This heterogeneity presents a challenge in generalizing our results to the larger patient 403 

population. Related to this issue is the small sample size present in our study. Evidence has shown 404 

that performance of machine learning algorithms scales with sample size in neuroimaging studies 405 

(Marc-Andre et al. 2020). A separate limitation is that the age of our mTBI cohort is older than the 406 

control group. Additionally, our study did not take into consideration the heterogeneity of the timing 407 

of neuroimaging relative to the timing of injury among our subjects. The phase of recovery after the 408 

brain injury has been shown to have an impact on changes in brain connectivity (Dall’Acqua et al. 409 

2017). In order to overcome these limitations, longitudinal and prospective studies are needed to gain 410 

a better understanding of how early connectivity changes due to mTBI result in chronic cognitive and 411 

behavioral deficits. Better study design may reveal more sensitive and specific biomarkers that can be 412 

used in tandem with clinical evaluation to enable early diagnosis. In the future, longitudinal studies 413 

are needed to gain a better understanding of how early connectivity changes due to mTBI result in 414 

chronic cognitive and behavioral deficits. Prospective studies may reveal specific biomarkers that can 415 

be used in tandem with clinical evaluation to enable early diagnosis. 416 

6 Conclusion 417 

In summary, our machine-learning approach revealed changes in brain networks associated 418 
with mild TBI. Through a novel feature selection method, we demonstrated that multimodal imaging 419 
of both structural and functional connectomes can serve as a potential biomarker for mild TBI. Our 420 
results show that differences in functional connectivity are reflected by corresponding changes in 421 
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structural connectivity. Further, our results suggest that mild TBI affects the relationship between 422 
structural and functional connectivity.  423 
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