Abstract
Background Decision makers may use social distancing to reduce transmission between risk groups in a pandemic scenario like Covid-19. However, it may result in both financial, mental, and social costs. Given these tradeoffs, it is unclear when and who needs to social distance over the course of a pandemic when policies are allowed to change dynamically over time and vary across different risk groups (e.g., older versus younger individuals face different Covid-19 risks). In this study, we examine the optimal time to implement social distancing to optimize social utility, using Covid-19 as an example.
Methodology We propose using a Markov decision process (MDP) model that incorporates transmission dynamics of an age-stratified SEIR compartmental model to identify the optimal social distancing policy for each risk group over time. We parameterize the model using population-based tracking data on Covid-19 within the US. We compare results of two cases: allowing the social distancing policy to vary only over time, or over both time and population (by risk group). To examine the robustness of our results, we perform sensitivity analysis on patient costs, transmission rates, clearance rates, mortality rates.
Results Our model framework can be used to effectively evaluate dynamic policies while disease transmission and progression occurs. When the policy cannot vary by subpopulation, the optimal policy is to implement social distancing for a limited duration at the beginning of the epidemic; when the policy can vary by subpopulation, our results suggest that some subgroups (older adults) may never need to socially distance. This result may occur because older adults occupy a relatively small proportion of the total population and have less contact with others even without social distancing.
Conclusion Our results show that the additional flexibility of allowing social distancing policies to vary over time and across the population can generate substantial utility gain even when only two patient risk groups are considered. MDP frameworks may help generate helpful insights for policymakers. Our results suggest that social distancing for high-contact but low-risk individuals (e.g., such as younger adults) may be more beneficial in some settings than doing so for low-contact but high-risk individuals (e.g., older adults).
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005697
https://www.vtcrc.com/tenant-stories/virginia-bioinformatics-institute/
Abbreviations
- MDP
- Markov Decision Process
- homog
- homogeneous
- inhomog
- inhomogeneous