Abstract
Waning serum antibodies against SARS-CoV-2 have sparked discussions about long-term immunity and need for vaccine boosters. We examined SARS-CoV-2 spike IgG antibodies in a longitudinal cohort, comparing antibody decay in individuals who received an mRNA SARS-CoV-2 vaccine, with and without prior SARS-CoV-2 infection. We completed a longitudinal cohort of healthcare workers (HWs) between June 2020 and September 2021. HWs were included if they had a serum sample collected after SARS-CoV-2 infection and/or a serum sample collected ≥ 14 days after second dose of an mRNA SARS-CoV-2 vaccine. Linear regression models adjusting for vaccine type, age, and sex were used to compare post-vaccination antibody levels between 1) HWs with and without prior SARS-CoV-2 infection and 2) HWs with prior SARS-CoV-2 infection ≤ 90 days and > 90 days prior to first vaccine. Serum was collected from 98 HWs after SARS-CoV-2 infection and before vaccine, and 1960 HWs ≥ 14 days following second vaccine dose. Serum spike antibody levels were higher after vaccination than after natural infection. Compared to SARS-CoV-2 naïve individuals, those with prior infection maintained higher post-vaccination mean spike IgG values at 1, 3, and 6 months, after adjusting for age, sex, and vaccine type. Individuals with PCR-confirmed infection > 90 days before vaccination had higher post-vaccination antibody levels than individuals infected ≤ 90 days before vaccination. Individuals with three exposures to spike protein maintain the highest antibody levels particularly when first and second exposures were greater than 90 days apart. A booster dose provides a third exposure and may similarly induce a more durable antibody response.
Competing Interest Statement
A.M. reports grant support from Merck for work unrelated to this study. Other authors report no conflicts.
Funding Statement
Research reported in this publication was supported in part by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH) under award number K24AI141580 (A.M.) and the generosity of the collective community of donors to the Johns Hopkins University School of Medicine and the Johns Hopkins Health System for Covid-19 research.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethical approval was obtained from the Johns Hopkins University Institutional Review Board.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Alternate Author: Aaron M. Milstone, MD, MHS, Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Rubenstein 3141, Baltimore, MD 21210, amilsto1{at}jhmi.edu
Data Availability
Data are being analyzed as part of an ongoing cohort study. Data will be made available by request at the completion of the cohort study.