Machine Learning Methods to Predict Survival in Patients Following Traumatic Aortic Injury
View ORCID ProfileNisreen Shiban, View ORCID ProfileJoshua Gaul, View ORCID ProfileHenry Zhan, View ORCID ProfileAndrew Elhabr, View ORCID ProfileNima Kokabi, View ORCID ProfileJamlik-Omari Johnson, View ORCID ProfileTarek Hanna, View ORCID ProfileJustin Schrager, View ORCID ProfileJudy Gichoya, View ORCID ProfileImon Banerjee, View ORCID ProfileHari Trivedi
doi: https://doi.org/10.1101/2021.07.28.21261166
Nisreen Shiban
1Emory University, Atlanta, GA
Joshua Gaul
2Georgia Institute of Technology, Atlanta, GA
Henry Zhan
1Emory University, Atlanta, GA
MDAndrew Elhabr
2Georgia Institute of Technology, Atlanta, GA
Nima Kokabi
1Emory University, Atlanta, GA
MDJamlik-Omari Johnson
1Emory University, Atlanta, GA
MDTarek Hanna
1Emory University, Atlanta, GA
MDJustin Schrager
1Emory University, Atlanta, GA
MDJudy Gichoya
1Emory University, Atlanta, GA
MDImon Banerjee
1Emory University, Atlanta, GA
PhDHari Trivedi
1Emory University, Atlanta, GA
MDData Availability
We have utilized the National Trauma Data Bank (NTDB) - a large data repository that encompasses a wide variety of traumatic injuries, interventions, and outcomes in trauma patients. The NTDB is compiled annually by the American College of Surgeons (ACS) using standardized data contributions from trauma hospitals across the U.S.
Posted July 31, 2021.
Machine Learning Methods to Predict Survival in Patients Following Traumatic Aortic Injury
Nisreen Shiban, Joshua Gaul, Henry Zhan, Andrew Elhabr, Nima Kokabi, Jamlik-Omari Johnson, Tarek Hanna, Justin Schrager, Judy Gichoya, Imon Banerjee, Hari Trivedi
medRxiv 2021.07.28.21261166; doi: https://doi.org/10.1101/2021.07.28.21261166
Machine Learning Methods to Predict Survival in Patients Following Traumatic Aortic Injury
Nisreen Shiban, Joshua Gaul, Henry Zhan, Andrew Elhabr, Nima Kokabi, Jamlik-Omari Johnson, Tarek Hanna, Justin Schrager, Judy Gichoya, Imon Banerjee, Hari Trivedi
medRxiv 2021.07.28.21261166; doi: https://doi.org/10.1101/2021.07.28.21261166
Subject Area
Subject Areas
- Addiction Medicine (379)
- Allergy and Immunology (694)
- Anesthesia (186)
- Cardiovascular Medicine (2806)
- Dermatology (241)
- Emergency Medicine (424)
- Epidemiology (12492)
- Forensic Medicine (10)
- Gastroenterology (796)
- Genetic and Genomic Medicine (4360)
- Geriatric Medicine (397)
- Health Economics (710)
- Health Informatics (2805)
- Health Policy (1041)
- Hematology (372)
- HIV/AIDS (888)
- Medical Education (410)
- Medical Ethics (113)
- Nephrology (458)
- Neurology (4127)
- Nursing (219)
- Nutrition (612)
- Oncology (2178)
- Ophthalmology (616)
- Orthopedics (253)
- Otolaryngology (315)
- Pain Medicine (260)
- Palliative Medicine (80)
- Pathology (482)
- Pediatrics (1166)
- Primary Care Research (478)
- Public and Global Health (6719)
- Radiology and Imaging (1475)
- Respiratory Medicine (893)
- Rheumatology (427)
- Sports Medicine (359)
- Surgery (468)
- Toxicology (57)
- Transplantation (197)
- Urology (173)