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Abstract 
 

The National Trauma Data Bank (NTDB) is a resource of diagnostic, treatment, and outcomes information in trauma 
patients. We leverage the NTDB and machine learning techniques to predict survival following traumatic aortic 
injury. We create two predictive models using the NTDB – 1) using all data and, 2) using only data available in the 
first hour after arrival (prospective data). Seven discriminative model types were tested before and after feature 
engineering to reduce dimensionality. The top performing model was XGBoost, achieving an overall accuracy of 
0.893 using all data and 0.855 using prospective data. Feature engineering improved performance of all models. 
Glasgow Coma Scale score was the most important factor for survival, and thoracic endovascular aortic repair was 
more common in patients that survived. Smoking, pneumonia, and urinary tract infection predicted poor survival. We 
also note concerning disparities in outcomes for black and uninsured patients that may reflect differences in care. 

 
Introduction 

 
Traumatic aortic injury (TAI) is the second leading cause of death in multi-trauma patients and requires urgent 
management 1. Although only 38% of patients survive following acute aortic injury, better management at the scene 
of the accident and quicker transportation to hospitals has led to improvements in overall survival, with only 4% of 
patients dying en route 2. Nonetheless, mortality around the time of the injury remains high, estimated at 20% in the 
24 hours following hospital admission 3. 

 
Retrospective studies around predicting mortality in TAI show that thoracic endovascular aortic repair (TEVAR) is 
associated with improved outcomes compared with open repair, specifically lower mortality and lower incidence of 
spinal cord ischemia 4,5. These works predominantly report the effects of non-operative management, TEVAR, or 
open aortic repair and control only for major demographic factors when evaluating outcomes. However, there are no 
comprehensive studies that include more detailed comorbidities, complications, and injury types that may affect 
outcomes in patients with TAI. 

 
Modern machine learning (ML) methods and advances in hardware have enabled development of robust prediction 
models that integrate thousands of features, far beyond what is possible in traditional multivariate analysis. In 
Emergency Medicine, ML models have been developed for a variety of pathologies, including acute kidney injury, 
influenza, and sepsis 6–8. In this study, we aimed to develop an ML model to predict survival in TAI using detailed 
patient information available on arrival and throughout the hospital stay. 

 
To gather sufficient data for evaluation of outcomes in TAI, we leveraged the National Trauma Data Bank (NTDB) - 
a large data repository that encompasses a wide variety of traumatic injuries, interventions, and outcomes in trauma 
patients9. The NTDB is compiled annually by the American College of Surgeons (ACS) using standardized data 
contributions from trauma hospitals across the U.S. Several studies have applied machine learning techniques to the 
NTDB to investigate clinical problems such as traumatic brain injury (TBI) and overall trauma severity, however these 
studies often focus only on limited portions of the available data or create trauma models that are too general for more 
rare pathologies such as TAI. For example, Abujaber et al discard 30% of patients with TBI due to missing data and 
use a hand-selected list of features rather than the entirety of data available 10. Gorczyca et al created a new general 
trauma severity model but do not report performance for any specific pathologies 11. 

 
In this work, we leverage all available data fields in the NTDB to answer a specific clinical question and implement 
feature engineering techniques to improve model performance. These pre-processing techniques are generalizable 
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Raw Data 

 
Demographics 

 

OHE Ordinal or 
Continuous 

regardless of the clinical application, and therefore can be used to more easily create pathology-specific models that 
may highlight patterns in patient outcomes. We also report the performance of multiple types of ML architectures and 
provide explainable results with feature importances from our top-performing model. 

 
Methods 

 

Cohort Selection 
We focused on NTDB data 
from 2011 to 2015 for 
uniformity in international 
classification of disease 9th 
edition (ICD-9) diagnostic 
codes. There were 5.1M 
recorded trauma incidents 
with each row in the dataset 
representing one incident. 
Individual patients are not 
tracked in the dataset so 
multiple incidents per patient 
could not be evaluated. 

 
Patient Selection and 
Outcomes Categorization 
To identify incidents with 
TAI, we filtered based on 
ICD-9 diagnostic codes of 
901.0, 902.0, and 441.* which 
are specific to dissection or 
other injury of the thoracic or 
abdominal aorta, yielding 
12,435 unique incidents. The 
NTDB contains 18 possible 
patient dispositions ranging 
from discharged, deceased, or 
transfer to various facilities. 
Outcomes were binarized as 
survival (alive) or non- 
survival (deceased) based on 
these codes (Figure 1). 
Specifically, dispositions that 
included deceased, expired, or 
hospice were considered as the 
deceased class, and all other 
codes including discharge or 

 

 

 
Figure 1. Schematic of patient selection. Traumatic aortic injury was identified using ICD-9 codes. 
Outcomes were identified using the disposition field in the NTDB. Blue represent the deceased class, 
yellow and orange represent the alive class, and gray represents cases that were excluded due to lack 
of disposition information. 

 
 

 

 
 
 
 
 
 
 
 

Figure 2. Overall schematic of feature engineering to reduce data sparseness and improve model 
performance. Raw data is represented in green, post-processing steps to reduce dimensionality are in 
yellow, and final data representation is in red. OHE = one hot encoding. 

transfer to another short term or long-term care facility were considered as the alive class. Patients who did not have 
disposition information were excluded, yielding 9,294 remaining incidents. 

 
Data Elements and Model Types 
There are over 23,000 discrete data elements in the NTDB, including ICD-9 diagnostic (DCODE) and procedural 
(PCODE) codes, abbreviated injury scale (AIS) codes, emergency medical service (EMS) response time, emergency 
codes (ECODE), method of arrival, ED vital signs, patient demographics, and payment methods. 
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Because the NTDB does not include timestamps for most data 
(with the exception of PCODEs), we developed two models 
using different data elements: 1) Full Data model - using all 
available data throughout the hospitalization, and 2) 
Prospective model – including only data available within 
the first hour of presentation, thereby excluding DCODEs, 
complications, and any PCODEs after the first hour. 

 
Feature Engineering 
Each data element is contained within individual .csv files that 
are linked by trauma incident keys. Data was imported into 
Pandas 12 dataframes inside of Python 13. Empty fields for each 
feature were replaced with a negative value to avoid the need 
to removal the entire sample while still allowing the model to 
effectively ignore the feature for that sample. To make the data 
more manageable for machine learning models, we employed 
several feature engineering techniques on each data element 
that are detailed below. These techniques can be employed for 
many different machine learning projects for the NTDB, 
although they may have to be tailored based on the patient 
cohort and clinical problem of interest. An overview of feature 
engineering is presented in Figure 2 and details on each major 
data type are outlined subsequently. 

 
Diagnostic Codes (DCODE). The ICD-9 database contains 
over 13,000 unique possible which and are represented for 
each incident using the DCODE variable. Coding using ICD- 
10 began in 2016 so these cases were excluded. ICD-9 codes 
typically consist of a stem 3 digits indicating a major category, 
followed by a decimal and 2 more digits indicating finer 
details. Our dataset contained 4220 unique DCODEs, and 
original attempts to train a model with all 4220 codes were 
unsuccessful due to data sparsity. To reduce dimensionality 
while maintaining major diagnostic categories, we truncated 
the final two digits and only considered the parent class in ICD- 
9 terminology, resulting in 556 remaining unique DCODEs. 
For instance, the original DCODE 850.12 denotes 
“Concussion, with loss of consciousness from 31 to 59 
minutes.” When truncated to 850, the parent class of 
“Concussion” remains, retaining valuable clinical information. 

 
Procedure Codes (PCODE). ICD-9 procedural codes are 
represented  by  the  PCODE  variable.  Each  trauma incident 

 
 Alive 

(n=7,036) 
Deceased 
(n=2,258) 

Age and Gender 
Age (yr) 42.2 ± 30.0 39.7 ± 33.1 
Female 1944 (80%) 493 (20%) 
Male 5091 (74%) 1764 (26%) 

Payment 
Blue Cross / Blue 
Shield 325 (85%) 57 (15%) 

Medicaid 784 (77%) 236 (23%) 
Medicare 1199 (80%) 309 (20%) 
No Fault 821 (78%) 228 (22%) 

Not Applicable 91 (81%) 21 (19%) 
Not Billed 22 (38%) 36 (62%) 
Unknown 321 (74%) 115 (26%) 
Other 309 (78%) 88 (22%) 

Other Government 237 (73%) 87 (27%) 
Private / 
Commercial 1837 (83%) 379 (17%) 

Self Pay 945 (58%) 676 (42%) 
Workers 
Compensation 145 (85%) 26 (15%) 

Race 

White 4943 (80%) 1215 (20%) 

African American 1013 (62%) 617 (38%) 
Asian 119 (68%) 55 (32%) 

American Indian 51 (81%) 12 (19%) 

Hawaiian / Pacific 
Islander 14 (54%) 12 (46%) 

Not Applicable 43 (83%) 9 (17%) 
Unknown 222 (68%) 105 (32%) 
Other 631 (73%) 233 (27%) 

 
Table 1. Demographics distribution of patients. Overall 
survival was similar between genders, although there were 
significantly more male patients than female overall. Self-pay, 
Medicare, Medicaid, and other government coverage patients 
overall had higher rates of death as compared to privately 
insured patients. African American patients also had higher 
rates of death than white patients. 

contains one list of PCODEs and a second list representing the time of occurrence of each PCODE. The original size 
of PCODEs variable for our dataset was 4,932 unique values. Similar to DCODEs, representing the raw data created 
a very sparse dataset. Initially, we removed the final two digits from the PCODE to reduce dimensionality, but this 
removed valuable procedure details. We also attempted encoding the PCODE vector using an autoencoder model, but 
this eliminated the time of occurrence from the data. Ultimately, the best results were obtained by retaining each 
PCODE in its original form and encoding the time of first occurrence for each PCODE after one hot encoding. For 
example, for a given incident with original PCODE list of [793.19, 39.73, and 793.13] with times of [30, 90, 360] 
minutes, the final data would be represented as only two elements: [793.19, 30] and [39.73, 90] with removal of the 
second occurrence of 793.13. 

 
Abbreviated Injury Scale Score. The Abbreviated Injury Scale (AIS) Score is represented by a PREDOT code and 
severity score. In the PREDOT code, the first digit denotes the body region of the injury (head, face, neck, thorax, 
etc.), the second digit denotes the type of anatomic structure (vessels, nerves, organs, skeletal, etc.), and digits 3-6 
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describe the nature and level of the injury (abrasion, contusion, 
amputation, burn, etc.). The original dataset contained 329 unique 
AIS codes with a sparse feature space. To reduce dimensionality, 
we retained only the first two digits of the PREDOT code resulting 
in 32 remaining features. 

 
Other Features Included in Model. Vital signs include pulse, 
systolic blood pressure (SBP), Glasgow Coma Scale Total 
(GCSTOT), and oxygen saturation (OXYSAT) on arrival. The GCS 
total is represented by integers 1-15. Pulse, SBP, and OXYSAT are 
represented as continuous variables. EMSMINS represents the 
elapsed time between EMS transport dispatch to its arrival on the 
scene. 

 
COMORBID represents pre-existing comorbidities for the patient 
and is represented by 25 unique elements including diabetes, 
hypertension, obesity, etc. Three elements - “other”, “not 
applicable” and “not recorded”, were removed. 

 
COMPLIC represents any complications that occurred after patient 
arrival, and is represented by 25 unique elements such as pulmonary 
embolism, pneumonia, or surgical site infections. Similar to 
comorbidities, we removed the elements “other”, “not applicable” 
and “not recorded.” 

 
ECODE represents the ICD-9 external cause of injury, such as 
motor vehicle, fall, struck by/against, firearm, or poisoning. There 
were 250 ECODEs in our dataset, and no feature engineering was 
performed. 

 
Finally, demographic information includes age, gender, race, and 
ethnicity. Payment information includes the method of payment 
from the patient and includes elements such as self-pay, Medicare, 
government, or private insurance. Demographics and payment 
information were included in their original forms. 

 
Discriminative Model Selection and Evaluation 
Multiple classification models were tested, including Logistic 
Regression (LR), k-Nearest Neighbors (KNN), extreme gradient 

 

Data Type Original 
Size 

Final 
Size 

% 
Reduction 

Comorbidities 30 30 0 

Pulse 1 1 0 
Systolic Blood 

Pressure 1 1 0 

GCS Total 1 1 0 
Oxygen 

Saturation 1 1 0 

E-codes 250 250 0 

Age 1 1 0 

Gender 3 3 0 

Race 8 8 0 

Ethnicity 4 4 0 

Facility Key 1 1 0 

D-codes 4220 556 86.82 

Complications 23 23 0 

Hospital 
Discharge 18 2 88.89 

Payment 12 12 0 

AIS Codes 329 32 90.27 

EMSMINS 1 1 0 
P-codes and 

Time 4932 2466 50 

All features 9907 3444 65.24 
Table 1. Results of feature engineering, netting a 65% 
decrease in total features for the dataset. This allows 
models to converge more easily, resulting in better 
model performance. Feature reduction also increased 
model interpretability and generalizability by decreasing 
the chance of overfitting. 

boosting (XGBoost), radial basis function SVM (RBF SVM), Multilayer Perceptron (MLP), Random Forest (RF) 14, 
and an ensemble of these models. Oversampling was used to handle the class imbalance between alive and deceased 
for all models. Each model was trained using five-fold cross validation and grid search over the hyperparameters. 
Using the parameters that maximize recall on the validation set, the model predicts and outputs the labels for the test 
set. For each model, the class-wise accuracy, recall, precision, and F1-score are reported. 

 
Results 

 
Patient Summary Statistics 

 
Of 9,294 trauma incidents, 73.8% (6,855) occurred in males and 26.2% (2,437) occurred in females and two were of 
unknown gender. Survival was 74.3% in males and 79.8% in females. Age was similar between groups with mean 
age of 42.2 +/- 30.0 years in the alive class and 39.7 +/- 33.1 years in the deceased class (Table 1, Figure 8). Overall 
racial distribution of patients was 66.3% white and 17.5% black, however death rate was higher in blacks (37.9%) as 
compared to whites (19.7%). Sample size for other races was too small to draw conclusions. There were also disparities 
in outcomes based on payment method, with death rates between 14.9 - 17.1% for privately insured patients, as 
compared to death rates of 20.5 – 41.7% for Medicare, Medicaid, and self-pay patients. 
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Model Performance 
 

Feature engineering netted a 65.2% compression in the feature space, from an initial size of 9,907 to a final total of 
3,444 features. DCODEs, PCODEs, and AIS codes were responsible for the greatest reduction (Table 2). 

 
Overall, the Full Data model performed slightly better than the Prospective model and both models performed better 
after feature engineering, although absolute performance differences varied based upon the model architecture. 
Performances was averaged over 100 iterations of random bootstrapping and results are summarized in Table 3, 

 
The top performing architecture for both the Full Data and Prospective models was XGBoost using 1,000 trees, with 
overall accuracies of 0.893 and 0.855, respectively. Area under the ROC and precision-recall curves were only slightly 
decreased for the Prospective model compared to Full Data model (Figure 3). Performance suffered most for recall 
in the deceased class for the Prospective model. The underlying reason for top performance of the XGBoost model 
can be attributed to the way in which weak learners are converted to strong learners through weight adjustments over 
multiple model iterations. This reduces bias from the model and improves accuracy. Other advantages of XGBoost 
are that it is highly scalable/parallelizable and has high execution efficiency. 

 
  

Before Feature Engineering 
 

After Feature Engineering 

 
Model 

 
Precision 

 
Recall 

 
F1-score 

 
Precision 

 
Recall 

 
F1-score 

 
Overall 

Accuracy 

 
Precision 

 
Recall 

 
F1-score 

 
Precision 

 
Recall 

 
F1-score 

 
Overall 

Accuracy 
Alive Deceased Alive Deceased 

Full Data Model - Using all features 

LR 0.913 0.659 0.765 0.427 0.801 0.557 0.693 0.945 0.822 0.879 0.582 0.840 0.687 0.826 

KNN 0.901 0.731 0.807 0.460 0.740 0.567 0.733 0.911 0.806 0.856 0.563 0.760 0.647 0.795 

XGBoost 0.917 0.934 0.926 0.800 0.758 0.778 0.889 0.923 0.938 0.931 0.787 0.745 0.766 0.893 

RBF SVM 0.886 0.902 0.894 0.674 0.635 0.654 0.838 0.931 0.903 0.917 0.727 0.794 0.759 0.876 

MLP 0.907 0.638 0.749 0.423 0.803 0.554 0.679 0.923 0.900 0.911 0.689 0.746 0.716 0.865 

RF 0.927 0.761 0.836 0.520 0.813 0.634 0.774 0.897 0.961 0.918 0.833 0.597 0.695 0.871 

Ensemble 0.907 0.770 0.829 0.551 0.757 0.623 0.766 0.911 0.878 0.899 0.731 0.783 0.701 0.875 

Prospective Model - Using features available within first hour of arrival 

LR 0.759 0.688 0.721 0.512 0.600 0.533 0.657 0.81 0.749 0.778 0.51 0.597 0.55 0.703 

KNN 0.812 0.794 0.803 0.614 0.642 0.628 0.742 0.811 0.78 0.795 0.539 0.585 0.561 0.721 

XGBoost 0.817 0.879 0.847 0.714 0.606 0.656 0.788 0.867 0.936 0.900 0.818 0.668 0.736 0.855 

RBF SVM 0.731 0.725 0.728 0.471 0.478 0.474 0.641 0.789 0.854 0.82 0.555 0.443 0.493 0.735 

MLP 0.621 1 0.766 0 0 0 0.621 0.748 0.53 0.621 0.338 0.574 0.425 0.543 

RF 0.773 0.928 0.844 0.821 0.534 0.645 0.783 0.808 0.966 0.88 0.852 0.464 0.601 0.815 

Ensemble 0.801 0.831 0.746 0.698 0.540 0.643 0.710 0.804 0.892 0.879 0.793 0.655 0.724 0.841 

Table 3. Model performances before and after feature engineering for the Full Data and Prospective models. Feature engineering resulted in 
increases in performance all models, although gains were modest for XGBoost. Performance decreased slightly overall for the Prospective model, 
with the biggest performance decrease in recall for the deceased class. 
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Figure 3. Receiving operating characteristic (left) and precision-recall curve (right) for the Full Data (green) and Prospective (blue) models. There 
was a small drop in all metrics for the Prospective model (blue) which excluded DCODES, complications, and any PCODE after the first hour. 
However both models still demonstrate high predictive performance. 

 
Feature Importances 

 
Overall Top Features. Top feature importances for the both the Full Data and Prospective models are shown in Figure 
4, demonstrating that the Glasgow Coma Scale (GCS) score is the most important feature predicting survival. This, 
along with feature 4 (AIS for head injury) and feature 6 (ICD-9 for concussion) in the Full Data model, suggests that 
patients with concurrent head trauma are much less likely to survive, either due to direct neurologic damage or possibly 
from autonomic dysregulation. A cohort study conducted by Indiana University School of Medicine and 
Rehabilitation Hospital showed that the hazard of death after traumatic brain injury (TBI) was higher for all TBI injury 
classification categories as compared to non-head traumatic injuries during the entire follow-up period 15. For the 
Prospective model, presence of early thoracotomy was a predictor for poor survival as was being a self-pay patient. 
The latter could be related to multiple confounding factors, including self-pay patients being more likely to be in 
previously poor health, indigent, or more severely injured and presenting to inner-city hospitals. Smoking was an 
important comorbidity for both models, likely related to underlying vascular disease. Complications of pneumonia 
and urinary tract infection important predictors considered only in the Full Data model since they occur after 
hospitalization. Lack of insurance and advanced directives limiting care were both important contributors to death. 

 
 

Figure 4. Overall feature importance for all data in the Full Data (left) and Prospective Data (right) models. Glasgow Coma Scale score was 
the most important feature for both models, indicating that concomitant head injury is a strong predictor of survival. Smoking history was highly 
predictive for both models, and complications of pneumonia and urinary tract infection after hospitalization was predictive in the Full Data 
model. Procedures including open thoracotomy within the first hour, cardiac massage, and resuscitation were also associated with poor survival. 

 
Procedure Codes. Endovascular graft implantation was the third most important procedure code in the Full Data 
model indicating that this is common in patients that survive (Figure 5). This is corroborated by previous studies 
highlighting improved outcomes in patients undergoing TEVAR, and that patients presenting to locations where this 
is unavailable may have worse outcomes. Results from multicenter clinical trials have demonstrated many early 
benefits of TEVAR as compared with standard surgical repair, such as less blood loss and transfusion requirement, 
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Feature Importance 
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Concussion 

 

Injury to spleen

Injury to heart closed 

 

Injury of thoracic aorta 

Dissection of aorta aneurysm 

 

Intracranial injury 

 0.2 0.4 

 
0.6 0.8 

Deceased Alive  

reduced ICU utilization, shorter 
procedure times, decreased length of 
hospital stay, lower rates of major 
adverse events, and quicker recovery 
16. The mean time for each of the top 
procedures was calculated between 
the groups, and there was no 
statistical difference, although both 
exploratory thoracotomy and 
laparotomy trended earlier in the 
deceased group (3 ± 26 and 9 ± 58 
min) than the alive group (69 ± 154 
and 30 ± 106 min). Mean time for 
TEVAR was not significantly 
different in the deceased (28 ± 146 
min) versus alive group (35 ± 90 
min). Other procedure codes 
including open chest cardiac 
massage, cardiopulmonary 
resuscitation (CPR), and transfusion 
were associated with poor survival. 

 
Diagnostic Codes. The highest 
weighted diagnostic codes in the Full 
Data model were presence of 
concussion and intracranial 
hemorrhage, again indicating that head 
trauma portends a poor prognosis 
(Figure 6). Splenic injury and 
abdominal aortic injuries were the next 
two most important features, indicating 
that concurrent blunt abdominal injury 
carries a poor prognosis. Cardiac 
injury, dissection, and pneumothorax 
were the remaining top features. 

 
AIS Codes. Most injury types were 
more common in the deceased class, 
including head and facial injuries as 
previously observed (Figure 7). 
Abdominal vascular and organ injury 
were also more common in the 

 

 
Figure 5. Most predictive procedure codes (PCODE) that contributed to performance of the 
Full Data model. Cardiac massage and CPR were the top predictors for death, while thoracic 
endovascular graft implantation (TEVAR) was associated with survival. Both exploratory 
thoracotomy and laparotomy occurred much more frequently in deceased patients. 

 
 

Figure 6. The top 10 most predictive diagnostic codes (DCODE) that contributed to model 
performance. Head injuries were the two most important diagnostic codes, followed by 
splenic and abdominal aortic injury indicating blunt abdominal trauma. 

deceased group. Interestingly thoracic skeletal and organ injury was slightly more common in the alive group, as was 
lower extremity injury. This may be related to bias in coding rather than true differences in injury patterns. 

 
Other features. Mean GCS score was 12.6 ± 4.3 in alive patients and 7.5 ± 5.3 in deceased patients (Figure 8). Vital 
signs including pulse, oxygen saturation, and blood pressure on arrival were not significantly different between 
classes. Mean time of EMS arrival trended lower in the deceased class, suggesting that delay in hospital transfer was 
not responsible for death in most patients. 

 
Discussion 

 
We demonstrate that machine learning is a powerful tool to examine factors that contribute to survival in trauma 
patients. To our knowledge, this is the first published machine learning model for predicting survival in TAI. Our 
models were able to leverage all available data in the NTDB with no hand-selected features and yield accuracies above 
85% in predicting survival. It is interesting to note that the Full Data model achieved only slightly higher overall 
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performance that the Prospective model 
despite five out of the top ten features in 
the Full Data model being 
complications, comorbidities, and 
diagnostic codes which were not 
available to the Prospective model. This 
suggests that the Prospective model was 
able to learn substantially different 
patterns in the data with information 
available only within the first hour of 
arrival, and that a patient’s likelihood of 
survival is largely determined within the 
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first hour of their presentation. However, 
it is noteworthy that recall for the 
deceased class suffered the biggest 
performance drop in the Prospective 
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model, indicating that complications or 
later procedures during hospitalization 
affect survival. Feature engineering was 
very important to improving model 
performance, and our techniques can be 
re-used by other groups to more easily 
investigate other clinical questions using 
the NTDB. 

Deceased Alive Importance 
 

Figure 7. Top predictive AIS codes that contributed to model performance. Head injuries 
were more common in the deceased class, as were abdominal vascular and organ injury. 
Concurrent thoracic organ and skeletal injuries were also more common in the deceased 
class. 

 

Our results also raise concerns around disparities in outcomes dependent upon race and insurance status. Black patients 
were more likely to die following TAI, as were poor patients with Medicaid or no insurance (self-pay). Whether this 
is related to their quality of care cannot be determined, but it is possible that patients of lower socioeconomic status 
or racial minorities may be more likely to suffer serious injuries, have less access to high quality care, or have worse 
pre-existing health. 

 
In both models, the GCS score on arrival was the single most 
important predictor of survival for all patients with TAI. This is 
expected, as deaths from head injuries account for 34 percent of 
all traumatic deaths which may overlap with patients with TAI17. 
However, there were no significant differences in age, pulse, or 
blood pressure on arrival between the classes. Smoking was 
overall associated with worse increased risk death in both models, 
and complications of pneumonia and urinary tract infection also 
contributed to death in the Full Data model. 

 

Our results showed that endovascular graft implantation was much 
more common in patients that survived than those who did not, in 
keeping with published literature. However, this shows 
correlation and not necessarily causality because of intrinsic 
differences in patients who are eligible for graft implantation such 
as other concurrent injuries, severity of vascular injury, and 
hemodynamic stability. 

 
Open laparotomy and thoracotomy were highly associated with 
death in both models and trended earlier in the deceased class, 
meaning that patients who require these procedures early due to 
other thoracic or abdominal injuries (e.g. penetrating trauma, 
bowel injury, etc.) have poor prognosis. Similarly, open chest 

 
 
 
 
 
 
 
 
 
 

Figure 8. Demographics and vital signs between alive 
(orange) and deceased (grey) classes. GCS score was lower 
in the deceased class, whereas other vital signs were similar. 
Mean EMS time trended lower for the deceased class. 

cardiac massage and CPR were associated with death and it is known that survival following either of these procedures, 
regardless of root cause, is very low. 
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This study has limitations. First, model predictions could not be made continuously during an admission due to lack 
of timestamp data; rather, they could be made shortly after arrival or at the conclusion of care. This means that we 
could not compare the true hospital course of a patient following specific procedures such as TEVAR. Second, 
although this dataset is the largest dataset for TAI with 12,435 patients, this is still a relatively small number of samples 
for traditional machine learning methods and therefore model performance was somewhat lower than more general 
tools for survival in trauma patients. Lastly, we were unable to externally validate the model on a local dataset due to 
differences in data structures; however, because the NTDB is sampled from trauma centers nationwide, these results 
should be generalizable across patient populations and geographies. 

 
In conclusion, we present a machine learning framework for using the NTDB to evaluate factors that contribute to 
patient survival in patients with traumatic aortic injury, and demonstrate that feature engineering is a crucial step in 
improving model performance and making results interpretable. All data pre-processing steps and the final model will 
be released publicly to enable other groups to leverage the NTDB to investigate other important clinical questions. 
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