Abstract
Background Comorbidity burden has been identified as a relevant predictor of critical illness in patients hospitalized with coronavirus disease 2019 (COVID-19). However, comorbidity burden is often represented by a simple count of few conditions that may not fully capture patients’ complexity.
Purpose To evaluate the performance of a comprehensive index of the comorbidity burden (Queralt DxS), which includes all chronic conditions present on admission, as an adjustment variable in models for predicting critical illness in hospitalized COVID-19 patients and compare it with two broadly used measures of comorbidity.
Patients and methods We analyzed data from all COVID-19 hospitalizations reported in eight public hospitals of Catalonia (North-East Spain) between June 15 and December 8 2020. The primary outcome was a composite of critical illness that included the need for invasive mechanical ventilation, transfer to ICU, or in-hospital death. Predictors included age, sex, and comorbidities present on admission measured using three indices: the Charlson index, the Elixhauser index, and the Queralt DxS index for comorbidities on admission. The performance of different fitted models was compared using various indicators, including the area under the receiving operating characteristics curve (AUC).
Results Our analysis included 4,607 hospitalized COVID-19 patients. Of them, 1,315 experienced critical illness. Comorbidities significantly contributed to predicting the outcome in all summary indices used. The AUC for prediction of critical illness was 0.641 (95% CI 0.624-0.660) for the Charlson index, 0.665 (0.645-0.681) for the Elixhauser index, and 0.787 (0.773-0.801) for Queralt DxS. Other metrics of model performance also showed Queralt DxS being consistently superior to the other indices.
Conclusion In our analysis, the ability of comorbidity indices to predict hospital outcomes in hospitalized COVID-19 patients increased with their exhaustivity. The comprehensive Queralt DxS index may improve the accuracy of predictive models for resource allocation and clinical decision-making in the hospital setting.
Competing Interest Statement
David Monterde declares that he is the developer of the Queralt System. This tool is available online for research purposes at no cost. The author reports no other conflicts of interest in this work, which did not receive specific funding.
Clinical Trial
NA
Funding Statement
This study did not receive specific funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The independent ethics committee of the Bellvitge Biomedical Research Institute (IDIBELL) approved the study protocol and waived the need for informed consent, as the data were generated as part of routine clinical care and fully de-identified for analytic purposes.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The datasets generated and/or analysed during the current study are not publicly accessible but are available from the corresponding author upon reasonable request.
Abbreviations
- AIC
- Akaike information criterion
- AUCPR
- area under the precision-recall
- AUCROC
- area under the receiving operating characteristics
- CI
- confidence interval
- CM
- clinical modification
- COVID-19
- coronavirus disease 2019
- ICD
- international classification of diseases
- ICS
- Catalan institute of health
- ICU
- intensive care unit
- IQR
- interquartile range