Abstract
Infectious disease forecasting has been a useful tool for public health planning and messaging during the COVID-19 pandemic. In partnership with the CDC, the organizers of the COVID-19 Forecast Hub have created a mechanism for forecasters from academia, industry, and government organizations to submit weekly near-term predictions of COVID-19 targets in the United States. Here we describe our efforts to participate in the COVID-19 Forecast Hub through the Forecasting COVID-19 in the United States (FOCUS) project. The effort led to more than three months of weekly submissions and development of an automated pipeline to generate forecasts. The models used in FOCUS yielded forecasts that ranked relatively well in terms of precision and accuracy.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The work presented in this manuscript was funded internally by Signature Science, LLC. No external funding was received.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The work described here did not involve human subjects and did not require IRB oversight/approval.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Code and data sources used in project execution and evaluation are linked as footnotes and references throughout the manuscript.