Computational modelling of COVID-19: A study of compliance and superspreaders
View ORCID ProfileFaith Lee, View ORCID ProfileMaria Perez Ortiz, View ORCID ProfileJohn Shawe-Taylor
doi: https://doi.org/10.1101/2021.05.12.21257079
Faith Lee
1Department of Computer Science, University College London (UK)
Maria Perez Ortiz
1Department of Computer Science, University College London (UK)
John Shawe-Taylor
1Department of Computer Science, University College London (UK)
Data Availability
Source code for this project can be found at data availability link.
Posted May 15, 2021.
Computational modelling of COVID-19: A study of compliance and superspreaders
Faith Lee, Maria Perez Ortiz, John Shawe-Taylor
medRxiv 2021.05.12.21257079; doi: https://doi.org/10.1101/2021.05.12.21257079
Subject Area
Subject Areas
- Addiction Medicine (383)
- Allergy and Immunology (699)
- Anesthesia (192)
- Cardiovascular Medicine (2853)
- Dermatology (244)
- Emergency Medicine (430)
- Epidemiology (12560)
- Forensic Medicine (10)
- Gastroenterology (806)
- Genetic and Genomic Medicine (4434)
- Geriatric Medicine (401)
- Health Economics (716)
- Health Informatics (2850)
- Health Policy (1048)
- Hematology (375)
- HIV/AIDS (893)
- Medical Education (413)
- Medical Ethics (114)
- Nephrology (462)
- Neurology (4194)
- Nursing (222)
- Nutrition (617)
- Oncology (2204)
- Ophthalmology (624)
- Orthopedics (254)
- Otolaryngology (318)
- Pain Medicine (268)
- Palliative Medicine (82)
- Pathology (486)
- Pediatrics (1172)
- Primary Care Research (483)
- Public and Global Health (6782)
- Radiology and Imaging (1490)
- Respiratory Medicine (900)
- Rheumatology (430)
- Sports Medicine (369)
- Surgery (473)
- Toxicology (57)
- Transplantation (201)
- Urology (174)