Computational modelling of COVID-19: A study of compliance and superspreaders
View ORCID ProfileFaith Lee, View ORCID ProfileMaria Perez Ortiz, View ORCID ProfileJohn Shawe-Taylor
doi: https://doi.org/10.1101/2021.05.12.21257079
Faith Lee
1Department of Computer Science, University College London (UK)
Maria Perez Ortiz
1Department of Computer Science, University College London (UK)
John Shawe-Taylor
1Department of Computer Science, University College London (UK)
Article usage
Posted May 15, 2021.
Computational modelling of COVID-19: A study of compliance and superspreaders
Faith Lee, Maria Perez Ortiz, John Shawe-Taylor
medRxiv 2021.05.12.21257079; doi: https://doi.org/10.1101/2021.05.12.21257079
Subject Area
Subject Areas
- Addiction Medicine (383)
- Allergy and Immunology (699)
- Anesthesia (192)
- Cardiovascular Medicine (2852)
- Dermatology (244)
- Emergency Medicine (430)
- Epidemiology (12560)
- Forensic Medicine (10)
- Gastroenterology (806)
- Genetic and Genomic Medicine (4434)
- Geriatric Medicine (401)
- Health Economics (716)
- Health Informatics (2850)
- Health Policy (1048)
- Hematology (375)
- HIV/AIDS (893)
- Medical Education (413)
- Medical Ethics (114)
- Nephrology (462)
- Neurology (4193)
- Nursing (222)
- Nutrition (617)
- Oncology (2204)
- Ophthalmology (624)
- Orthopedics (254)
- Otolaryngology (318)
- Pain Medicine (268)
- Palliative Medicine (82)
- Pathology (486)
- Pediatrics (1171)
- Primary Care Research (483)
- Public and Global Health (6782)
- Radiology and Imaging (1490)
- Respiratory Medicine (900)
- Rheumatology (430)
- Sports Medicine (369)
- Surgery (473)
- Toxicology (57)
- Transplantation (201)
- Urology (174)