Association of machine learning-derived measures of body fat distribution in >40,000 individuals with cardiometabolic diseases
View ORCID ProfileSaaket Agrawal, Marcus D. R. Klarqvist, Nathaniel Diamant, View ORCID ProfilePatrick T. Ellinor, Nehal N. Mehta, Anthony Philippakis, Kenney Ng, Puneet Batra, View ORCID ProfileAmit V. Khera
doi: https://doi.org/10.1101/2021.05.07.21256854
Saaket Agrawal
1Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
2Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
3Department of Medicine, Harvard Medical School, Boston, MA
BSMarcus D. R. Klarqvist
4Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
PhDNathaniel Diamant
4Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
BSPatrick T. Ellinor
1Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
3Department of Medicine, Harvard Medical School, Boston, MA
MD, PhDNehal N. Mehta
5National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
MDAnthony Philippakis
4Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
6Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA
MD, PhDKenney Ng
7Center for Computational Health, IBM Research, Cambridge, MA
PhDPuneet Batra
4Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
PhDAmit V. Khera
1Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
2Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
3Department of Medicine, Harvard Medical School, Boston, MA
MDData Availability
Code used to ingest whole-body Dixon MRI images from UK Biobank participants is made available at https://github.com/broadinstitute/ml4h/tree/master/ml4h/applications/ingest under an open-source BSD license. At the time of publication, new UK Biobank measures derived in this manuscript will be returned to the UK Biobank for other investigators to download.
Posted May 10, 2021.
Association of machine learning-derived measures of body fat distribution in >40,000 individuals with cardiometabolic diseases
Saaket Agrawal, Marcus D. R. Klarqvist, Nathaniel Diamant, Patrick T. Ellinor, Nehal N. Mehta, Anthony Philippakis, Kenney Ng, Puneet Batra, Amit V. Khera
medRxiv 2021.05.07.21256854; doi: https://doi.org/10.1101/2021.05.07.21256854
Association of machine learning-derived measures of body fat distribution in >40,000 individuals with cardiometabolic diseases
Saaket Agrawal, Marcus D. R. Klarqvist, Nathaniel Diamant, Patrick T. Ellinor, Nehal N. Mehta, Anthony Philippakis, Kenney Ng, Puneet Batra, Amit V. Khera
medRxiv 2021.05.07.21256854; doi: https://doi.org/10.1101/2021.05.07.21256854
Subject Areas
- Addiction Medicine (390)
- Allergy and Immunology (705)
- Anesthesia (195)
- Cardiovascular Medicine (2873)
- Dermatology (244)
- Emergency Medicine (431)
- Epidemiology (12596)
- Forensic Medicine (10)
- Gastroenterology (809)
- Genetic and Genomic Medicine (4470)
- Geriatric Medicine (405)
- Health Economics (717)
- Health Informatics (2865)
- Health Policy (1054)
- Hematology (378)
- HIV/AIDS (905)
- Medical Education (418)
- Medical Ethics (115)
- Nephrology (465)
- Neurology (4226)
- Nursing (226)
- Nutrition (619)
- Oncology (2215)
- Ophthalmology (628)
- Orthopedics (255)
- Otolaryngology (321)
- Pain Medicine (269)
- Palliative Medicine (83)
- Pathology (488)
- Pediatrics (1179)
- Primary Care Research (485)
- Public and Global Health (6810)
- Radiology and Imaging (1499)
- Respiratory Medicine (904)
- Rheumatology (430)
- Sports Medicine (372)
- Surgery (474)
- Toxicology (59)
- Transplantation (204)
- Urology (175)