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ABSTRACT 

Background 

Obesity is defined based on body-mass index (BMI), a proxy for overall adiposity. However, for any given 

BMI, individuals vary substantially in fat distribution. The clinical implications of this variability are not 

fully understood. 

Methods 

We studied MRI imaging data of 40,032 UK Biobank participants. Using previously quantified visceral 

(VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volume in up to 9,041 

to train convolutional neural networks, we quantified these depots in the remainder of the participants. 

We derived new metrics for each adipose depot – fully independent of BMI – by quantifying deviation 

from values predicted by BMI (e.g. VAT adjusted for BMI, VATadjBMI) and determined associations with 

cardiometabolic diseases. 

Results 

Machine learning models based on two-dimensional projection images enabled near-perfect estimation 

of VAT, ASAT, and GFAT, with r
2
 in a holdout testing dataset >0.97 for each. Using the newly derived 

measures of local adiposity – residualized based on BMI – we note marked heterogeneity in associations 

with cardiometabolic diseases. Taking presence of type 2 diabetes as an example, VATadjBMI was 

associated with significantly increased risk (odds ratio per standard deviation increase (OR/SD) 1.49; 

95%CI: 1.43-1.55), while ASATadjBMI was largely neutral (OR/SD 1.08; 95%CI: 1.03-1.14) and 

GFATadjBMI conferred protection (OR/SD 0.75; 95%CI: 0.71-0.79). Similar patterns were observed for 

coronary artery disease. 
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Conclusions 

For any given BMI, measures of local adiposity have variable and divergent associations with 

cardiometabolic diseases. 
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INTRODUCTION 

Obesity is a leading threat to global public health, with afflicted individuals at increased risk of a 

broad range of poor health outcomes – cardiovascular events, type 2 diabetes, cancer, and severe 

COVID-19 infection.
1–3

 Recent projections suggest that obesity – defined within clinical practice solely on 

the basis of body mass index (BMI) of at least 30 kg/m
2
 – will affect more than half of the U.S. adult 

population by as early as 2030.
4,5

 

Although individuals with increased BMI tend to have higher risk of adverse outcomes on average, 

previous studies have suggested considerable heterogeneity.
6–9

 These studies have sought to define 

markers of ‘metabolic health’ that can modify risk of obesity or nominated additional anthropometric 

measurements – such as measures of insulin resistance or waist circumference – as drivers of “within 

BMI-group variation” in cardiometabolic risk.
9–11

  

Variation in fat distribution is a potential unifying explanation of cardiometabolic risk differences 

between two individuals of a given BMI.
12,13

 Prior seminal studies have suggested that various fat depots 

have differing metabolic programs, with visceral adipose tissue (VAT) most strongly associated with 

cardiometabolic risk – but have potential limitations.
14–16

 First, most imaging studies to date have been 

cross-sectional and relatively small –  especially those utilizing the gold-standard MRI modality – limiting 

ability to assess for depot-specific effects across age, sex, and BMI subgroup demographics.
12,17–21

  

Second, gluteofemoral adipose tissue (GFAT), which may serve as an adaptive energy storage depot and 

a possible modifier of insulin resistance, has not been quantified by MRI in most previous studies.
18–22

 

Third, fat depot volumes tend to be highly correlated with both BMI and each other, making it 

challenging to isolate depot-specific associations with disease.
23

 

In this study, we downloaded raw MRI imaging data from 40,032 participants of the UK Biobank and 

used machine learning models to precisely measure three fat depot volumes: VAT, abdominal 
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subcutaneous adipose tissue (ASAT), and GFAT. We derive new measures for local adiposity burden, 

each fully independent of BMI and note significant heterogeneity in risk conferred: VAT adjusted for BMI 

(VATadjBMI) associated with increased risk of type 2 diabetes and coronary artery disease, ASATadjBMI 

largely risk-neutral, and GFATadjBMI conferring protection.  
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METHODS 

Study population  

 The UK Biobank is an observational study that enrolled over 500,000 individuals between the ages of 

40 and 69 years between 2006 and 2010, of whom 43,521 underwent MRI imaging between 2014 and 

2020 as part of an imaging substudy.
24,25

 After exclusion of 3,489 (8.0%) imaging scans based on 

technical problems or artifacts, 40,032 participants remained available for analysis (Supplementary 

Appendix). This analysis of data from the UK Biobank was approved by the Mass General Brigham 

institutional review board and was performed under UK Biobank application #7089. 

Machine learning to measure fat depot volumes 

Among the 40,032 individuals with MRI imaging data available, a subset had visceral adipose tissue 

(VAT) volume, abdominal subcutaneous adipose tissue (ASAT) volume, and total adipose tissue (TAT) 

volume between the top of vertebrae T9 and the bottom of the thigh muscles, quantified and made 

available as previously described (N=9,040, 9,041, 7,754 participants, respectively).
20,21,26,27

  

Gluteofemoral adipose tissue (GFAT) volume was derived by computing the difference between TAT and 

the sum of VAT and ASAT (Supplementary Appendix). We quantified these fat depots in the remaining 

participants using machine learning models, trained on composite images for each individual comprised 

of coronal and sagittal two-dimensional projections of both the fat and water phases (Figure 1). 

Individuals with previously quantified volumes were randomly split into 80% for convolutional neural 

network (CNN) training and cross-validation and a 20% holdout sample for testing (Table S1). Each CNN 

was then used to quantify the volume of the corresponding fat depot in the remaining individuals. More 

comprehensive descriptions of the deep learning modeling and quality control  – and the open-source 

code repository for data ingestion – are provided in the Supplementary Appendix.  
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Cardiometabolic disease definitions 

 The primary outcomes were prevalent and incident type 2 diabetes and coronary artery disease, 

where incident disease was defined as occurring after the date of MRI. Type 2 diabetes was defined on 

the basis of ICD-10 codes, self-report during a verbal interview with a trained nurse, use of diabetes 

medication, or a glycated hemoglobin greater than or equal to 6.5% before the date of imaging (Table 

S3). Coronary artery disease was defined as myocardial infarction, angina, coronary revascularization, or 

death from coronary causes as determined on the basis of ICD-10 codes, ICD-9 codes, OPCS-4 surgical 

codes, nurse interview, and national death registries (Table S4). 

Statistical analysis 

 We generated BMI-adjusted fat depot measurements by computing residuals from sex-specific 

linear regression models using BMI as the predictor and fat depot volume as the outcome, analogous to 

prior studies of waist-hip ratio adjusted for BMI.
28,29

 Logistic regression models were used to test the 

association of BMI-adjusted fat depot measurements with prevalent disease. To compute odds ratios 

across age, sex, and BMI subgroups, models were adjusted for age, sex (except in sex subgroup 

analyses), BMI, the other two fat depots (e.g. ASATadjBMI and GFATadjBMI for VATadjBMI), and MRI 

imaging center. Cox proportional-hazard models with the same covariates were used to test associations 

of BMI-adjusted fat depots with incident type 2 diabetes and coronary artery disease events. Finally, we 

used sex-stratified logistic regression to determine the gradient in probability of prevalent disease 

across clinical BMI categories. These models included interaction terms with body mass index along with 

the previously noted covariates and were standardized to the median of all predictor variables (except 

for MRI imaging center variable, where the mean was used) within each population.
4
  

All analyses were performed with the use of R software, version 3.6.0 (R Project for Statistical 

Computing). 
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RESULTS 

Among 40,032 participants with MRI data available, the mean age was 65 years, 51% were women, 

and 97% were white (Table 1). Mean BMI was 26.1 kg/m
2
 among women and 27.1 kg/m

2
 among men, 

and mean waist-hip ratio (WHR) was 0.82 among women, and 0.94 among men. 1,901 individuals had 

been diagnosed with type 2 diabetes (4.7%) and 1,956 with coronary artery disease (4.9%) at the time of 

imaging assessment. 

Machine learning facilitates near-perfect estimation of fat depot volumes 

To train convolutional neural network models to measure VAT, ASAT, and GFAT, we first simplified 

the three-dimensional MRI images into composite two-dimensional projections of coronal and sagittal 

views, leading to an 830-fold reduction in data input size (Figure 1). These machine learning models – 

trained on 80% of the participants with fat depots previously quantified – demonstrated near-perfect 

estimation association of each fat depot in the 20% of remaining individuals for each depot (r
2
 = 0.991, 

0.991, and 0.978 for VAT, ASAT, and GFAT, respectively), with similar predictive accuracy noted across 

male and female participants and in the small subset of non-White participants (Figure S1). These 

convolutional neural network models were subsequently applied to the remainder of the 40,032 

participants to calculate fat depot volumes. 

Variation in adipose volumes and association with cardiometabolic diseases 

We confirm and extend prior evidence for marked differences in fat depot volume in men versus 

women (Figure 2A).
30,31

 Mean visceral adipose tissue volume was substantially higher in men as 

compared to women – 5.0 versus 2.6 liters, respectively – while abdominal subcutaneous and 

gluteofemoral depots tended to predominate in women (Table 1). Moderate strength of correlation 

between global adiposity as assessed by BMI and all three fat depots was noted – Pearson r ranging 
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from 0.77 to 0.91 – but considerable variation was observed within any clinical BMI category (Figure 2A-

B). 

Adipose tissue volumes were each associated with increased prevalence of cardiometabolic diseases 

– as might be expected based on strength of correlation with BMI – with risk gradient most pronounced 

for VAT. Taking type 2 diabetes as an example, odds ratios per standard deviation increment (OR/SD) 

were 2.14 (95%CI 2.05-2.23), 1.69 ( 95%CI 1.63-1.75), and 1.48 (95%CI 1.42-1.54) for VAT, ASAT, and 

GFAT, respectively (Table S5). 

BMI-adjusted local fat depots and cardiometabolic disease 

To disentangle the unique impact of each fat depot from overall BMI, we next generated new 

measurements of VATadjBMI, ASATadjBMI, and GFATadjBMI for each participant by computing sex-

specific BMI residuals in 38,680 (97%) of the study population with BMI measurement on the day of MRI 

imaging available. These residuals reflect the difference in an individual’s local adipose tissue volume as 

compared with that expected based on BMI. These metrics were fully independent of BMI and largely 

independent of anthropometric measures and each other (Figures S2-S3). 

In contrast to analysis of raw tissue volumes – where each depot was associated with increased risk 

– significant heterogeneity was noted for BMI-adjusted values. In a mutually adjusted logistic regression 

model, we observe that VATadjBMI was associated with increased prevalence of type 2 diabetes – 

OR/SD  1.49; 95% CI 1.43-1.55). By contrast, a largely neutral effect estimate was noted for ASATadjBMI 

(OR/SD 1.08; 95%CI 1.03-1.14) and GFATadjBMI volumes were associated with decreased risk (OR/SD 

0.75; 95% CI: 0.71-0.79) (Figure 3). Effect estimates were largely consistent in subgroups binned by age 

or sex, with mildly attenuated gradients among participants with obesity (Figure S4-S5). A similar 

pattern was observed for coronary artery disease, where associations for VATadjBMI, ASATadjBMI, and 
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GFATadjBMI were 1.17 (95%CI 1.11-1.22), 1.00 (95%CI 0.94-1.05), and 0.89 (95%CI 0.84-0.94), 

respectively.  

To better understand the gradients in absolute prevalence rates according to BMI-adjusted fat 

depots, we calculated standardized estimates for the lowest quintile, quintiles 2-4, and the highest 

quintile within clinical categories of normal, overweight, and obese participants.  

Using this approach, we note substantial gradients in the prevalence of cardiometabolic diseases 

according to local adipose tissue burden, even within clinical BMI categories (Figure 4, Table S6-S7). As a 

representative example, men with normal BMI but VATadjBMI in the highest quintile had a probability 

of type 2 diabetes of 6.6% (95%CI 5.5-7.9), higher than obese men with VATadjBMI in the lowest 

quintile, in whom probability was 5.2% (95%CI 4.1-6.6). Among obese women, estimates of diabetes 

ranged from 3.5 to 9.2% across quintiles of VATadjBMI but 7.6 to 3.6% for GFATadjBMI. A similar pattern 

– with less pronounced gradients – was observed for coronary artery disease. 

BMI-adjusted fat depots and risk of incident cardiometabolic diseases 

Over a median follow-up of 1.8 years, 169 (0.4%) and 405 (1.0%) participants had a new diagnosis of 

type 2 diabetes or coronary artery disease recorded in the electronic health record. BMI-adjusted fat 

depots were similarly associated with risk of future disease events in mutually adjusted models. For 

incident type 2 diabetes, hazard ratios per SD increase (HR/SD) were 1.45 (95%CI 1.28-1.65), 0.96 (95%CI 

0.83-1.11), and 0.85 (95%CI 0.74-0.99) for VATadjBMI, ASATadjBMI, and GFATadjBMI, respectively 

(Table S8). For incident coronary artery disease, HR/SD were 1.18 (95%CI 1.07-1.30), 1.02 (95%CI 0.91-

1.14), and 0.93 (95%CI 0.83-1.04) for VATadjBMI, ASATadjBMI, and GFATadjBMI, respectively. 
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DISCUSSION 

In this study, we used a machine learning-based approach to quantify VAT, ASAT, and GFAT depot 

volumes from MRI images of 40,032 individuals. By then moving away from raw fat depot volumes – 

which are driven largely by BMI and overall adiposity – to BMI-adjusted measurements, we 

demonstrated a consistent trend of VATadjBMI associated with increasing risk of type 2 diabetes and 

coronary artery disease, ASATadjBMI largely risk-neutral, and GFATadjBMI conferring protection. 

These results have at least three implications. First, machine learning can enable new insights from 

large-scale data repositories of difficult-to-measure phenotypes. In this study, convolutional neural 

network models were used to precisely measure fat depot measurements from MRI images, considered 

the gold standard modality for volumetric measurement of adipose tissue.
16,32

 This work adds to several 

recent studies of machine learning-derived phenotypes including aortic size, liver fat, cardiac trabecular 

structure, and features of screening mammogram images most predictive of breast cancer.
33–36

 Although 

population-based assessment of fat distribution using MRI is unlikely to be practical, these results lay 

the scientific foundation for efforts to quantify such measures using other data – such as DEXA images 

or abdominal CT scans already embedded in the electronic medical record for some patients – or even 

static images of body silhouette, as might conceivably be obtained with a smartphone camera.
37,38

  

Second, these results support a growing appreciation that various fat depots – rather than serving as 

an agnostic sink for energy storage – have distinct metabolic profiles. Previous work has noted 

significant functional differences in adipocytes according to specific fat depot, ascribed in part to site-

specific expression of developmental genes associated with adipogenesis.
39,40

 While VAT tends to be the 

primary site for immediate storage of dietary-derived fat via adipocyte hypertrophy and has a higher 

rate of lipid turnover, GFAT is a more stable fat depot that primarily expands via adipocyte hyperplasia 

and may spare expansion of harmful visceral or ectopic fat depots. These and other studies support a 
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natural order of fat deposition, whereby a primary driver of high VAT in specific individuals may reflect 

an inability to adequately expand ASAT or GFAT depots.
13,41

 In rare Mendelian lipodystrophies – as 

occurs in individuals who harbor pathogenic LMNA mutations – an extreme example of this paradigm 

leads to marked reduction of ASAT and GFAT but relatively increased VAT and increased rates of severe 

insulin resistance.
42

  Whether individuals in the extreme tails of low GFATadjBMI and ASATadjBMI or 

high VATadjBMI might be enriched for genetic perturbations in lipodystrophy genes or the inherited 

component to these metrics is largely ‘polygenic’ – due to the aggregate effects of many common DNA 

variants, each of modest effect size – warrants further study.
43,44

   

Third, changes in measures of local adiposity – independent of weight and body-mass index – may 

serve as reliable proxies of cardiometabolic benefits of a given intervention, and warrant consideration 

as additional endpoints for future clinical trials. Most studies to date of obesity interventions have 

focused on reduction in overall weight or BMI as the primary outcome, consistent with FDA regulatory 

guidance.
45

 However, at least two classes of drugs appear to have a selective VAT reduction effect in 

clinical trials: thiazolidinediones and a synthetic form of growth hormone releasing hormone.
46,47

 

Whether these therapies might be repurposed from their original indications – type 2 diabetes and HIV-

associated lipodystrophy – or new agents might prove useful in a subset of individuals with VAT-driven 

increases in cardiometabolic risk warrants further study. 

Our study has several limitations. First, the majority of UK Biobank participants are white. Additional 

efforts are needed to extend these results to geographically and ancestrally diverse populations.
48

 

Second, this study was a cross-sectional analysis of individuals with mean age of 65 years at time of 

imaging. Future studies of individuals across the lifespan – especially those that include repeat imaging 

assessments – are warranted. Third, although we note striking associations of BMI-adjusted fat depots 

with cardiometabolic disease these observational data do not definitely prove causation or ability to 

modify fat distribution for therapeutic gain. 
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In conclusion, our machine-learning based analysis of raw MRI imaging data of 40,032 UK BIobank 

participants confirms prior observations of marked variation in fat distribution among participants with 

a given BMI. We extend these prior results by generating BMI-adjusted measures of local adiposity 

burden that have variable and divergent associations with important cardiometabolic diseases. 
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FIGURE LEGENDS 

FIGURE 1 Convolutional neural networks to quantify adipose tissue depots from body MRI images 
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(A) Two-dimensional projections are created by computing the mean pixel intensity along the coronal 

and sagittal axes. Two images were used as inputs into the convolutional neural network (CNN): one 

consisting of the coronal and sagittal two-dimensional projections in the fat phase, and another 

consisting of the same projections in the water phase. (B) CNNs trained on two-dimensional MRI 

projections achieved near-perfect prediction of each fat depot volume as measured by R
2
 and mean 

absolute error (MAE) in the holdout set (Table S1). (C) Three female participants with similar BMI 

(ranging from 29.1 to 29.6 kg/m
2
) but highly discordant fat depot volumes quantified by CNNs. Fat depot 

volume percentiles are computed relative to a subgroup of women with overweight BMI (25 ≤ BMI < 

30). Abbreviations: VAT, visceral adipose tissue; ASAT, abdominal subcutaneous adipose tissue; GFAT, 

gluteofemoral adipose tissue.  
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FIGURE 2 Sex-stratified density plots and correlation plots of visceral, abdominal subcutaneous, and 

gluteofemoral adipose tissue volumes 

 

(A; left) Sex- and BMI-group specific density plots for visceral adipose tissue (VAT), abdominal 

subcutaneous adipose tissue (ASAT), and gluteofemoral adipose tissue (GFAT). (B; right) Sex-stratified 

correlation plots between VAT, ASAT, GFAT and three anthropometric measures: body mass index 

(BMI), waist circumference (Waist), and hip circumference (Hip). Similar plots for BMI-adjusted fat 

depots are shown in Figure S2-S3. 
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FIGURE 3 Association of body-mass index adjusted fat depots with type 2 diabetes and coronary artery 

disease 

 

(A; top) Odds ratios per standard deviation shown for prevalent type 2 diabetes. (B; bottom) Odds ratios 

per standard deviation shown for prevalent coronary artery disease. Logistic regression models were 

adjusted for age, sex (excluding sex subgroup analyses), BMI, the other two fat depots (e.g. ASATadjBMI 

and GFATadjBMI for VATadjBMI), and MRI imaging center.  
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FIGURE 4 Prevalence of type 2 diabetes and coronary artery disease, according to quintiles of body-mass 

index adjusted fat depot and body-mass index strata 
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For each fat depot, the three bars from lightest to darkest represent the bottom quintile, quintiles 2-4, 

and the top quintile of the BMI-adjusted fat depot in question, respectively. Mean body-mass index was 

26.5 kg/m
2
 with 15,446 (39.9%) individuals with BMI < 25, 16,179 (41.8%) with 25 ≤ BMI < 30, and 7055 

(18.2%) with BMI ≥ 30.  
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TABLES 

TABLE 1 Baseline characteristics of UK Biobank participants at the time of MRI imaging 

 Women 

(N = 20,597) 

Men 

(N = 19,435) 

Age (years) 63.8±7.5 65.2±7.7 

Race 

White 19,936 (96.8) 18,773 (96.6) 

Black 192 (0.9) 137 (0.7) 

East Asian 137 (0.7) 112 (0.6) 

South Asian 133 (0.6) 238 (1.2) 

Other 199 (1.0) 175 (0.9) 

Systolic blood pressure 

(mmHg) 

135.8±19.2 142.0±17.4 

Diastolic blood pressure 

(mmHg) 

76.7±10.0 80.6±9.9 

Current smoker 583 (2.9) 785 (4.1) 

Weight (lbs) 151.8±28.0 184.8±29.0 

Height (in) 64.1±2.5 69.4±2.6 
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Body-mass index (kg/m
2
) 26.1±4.6 27.1±3.8 

Waist circumference (cm) 82.8±11.6 94.6±10.5 

Hip circumference (cm) 100.9±9.6 100.9±7.3 

Waist-to-hip ratio 0.82±0.07 0.94±0.06 

Fat Depot Volumes 

Visceral adipose tissue (L) 2.6±1.5 5.0±2.3 

Abdominal subcutaneous 

adipose tissue (L) 

7.9±3.3 5.9±2.5 

Gluteofemoral adipose tissue 

(L) 

11.3±3.2 9.3±2.6 

Cardiometabolic diseases 

Type 2 diabetes  637 (3.1) 1,264 (6.5) 

Coronary artery disease 414 (2.0) 1542 (7.9) 

 

Plus-minus values are means±SD. Race was determined on the basis of self-reported ethnic 

background at time of enrollment in the UK Biobank. 
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