ABSTRACT
Mutations in SARS-CoV-2 raised concerns about diminishing vaccine effectiveness against COVID-19 caused by particular variants. Even with high initial efficacy, if a vaccine’s efficacy drops significantly against variants, or if it cannot be distributed quickly, it is uncertain whether the vaccine can provide better health outcomes than other vaccines. Hence, we evaluated the trade-offs between the speed of distribution vs. efficacy against infection of multiple vaccines when variants emerge by utilizing a Susceptible-Infected-Recovered-Deceased (SIR-D) model and assessing the level of infection attack rate (IAR). Our results show that speed is a key factor to a successful immunization strategy to control the COVID-19 pandemic even when the emerging variants may reduce the efficacy of a vaccine. Due to supply-chain challenges, the accessibility and distribution of the vaccines have been hindered in many regions, especially in low-income countries, while the second or third wave of the pandemic has occurred due to the variants. Understanding the tradeoffs between speed and efficacy and distributing vaccines that are available as quickly as possible are crucial to eradicate the pandemic before new variants spread.
Competing Interest Statement
Dr İnci Yildirim reported being a member of the mRNA-1273 Study Group. Dr. Yildirim has received funding to her institution to conduct clinical research from BioFire, MedImmune, Regeneron, PaxVax, Pfizer, GSK, Merck, Novavax, Sanofi-Pasteur, and Micron. Dr. Pinar Keskinocak received funding to her institution from Merck to conduct non-clinical research. The funders played no role in the study design, data collection, analysis, interpretation, or in writing the manuscript.
Funding Statement
This research has been supported in part by the following Georgia Tech benefactors: William W. George, Andrea Laliberte, Claudia L. and J. Paul Raines, and Richard E. Rick and Charlene Zalesky. Dr. Inci Yildirim reported being a member of the mRNA-1273 Study Group. Dr. Yildirim has received funding to her institution to conduct clinical research from BioFire, MedImmune, Regeneron, PaxVax, Pfizer, GSK, Merck, Novavax, Sanofi-Pasteur, and Micron. Dr. Pinar Keskinocak received funding to her institution from Merck to conduct non-clinical research. The funders played no role in the study design, data collection, analysis, interpretation, or in writing the manuscript.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The manuscript uses public available information.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
email: dkim608{at}gatech.edu
email: pelin.pekgun{at}moore.sc.edu
email: inci.yildirim{at}yale.edu
Data Availability
No data is used or referred to in the manuscript.