Interpretable machine learning prediction of all-cause mortality
Wei Qiu, Hugh Chen, Ayse Berceste Dincer, Scott Lundberg, Matt Kaeberlein, View ORCID ProfileSu-In Lee
doi: https://doi.org/10.1101/2021.01.20.21250135
Wei Qiu
1Paul G. Allen School of Computer Science and Engineering, University of Washington
Hugh Chen
1Paul G. Allen School of Computer Science and Engineering, University of Washington
Ayse Berceste Dincer
1Paul G. Allen School of Computer Science and Engineering, University of Washington
Scott Lundberg
2Microsoft Research
Matt Kaeberlein
3Department of Laboratory Medicine and Pathology, University of Washington
Su-In Lee
1Paul G. Allen School of Computer Science and Engineering, University of Washington
Article usage
Posted January 12, 2022.
Interpretable machine learning prediction of all-cause mortality
Wei Qiu, Hugh Chen, Ayse Berceste Dincer, Scott Lundberg, Matt Kaeberlein, Su-In Lee
medRxiv 2021.01.20.21250135; doi: https://doi.org/10.1101/2021.01.20.21250135
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (710)
- Anesthesia (201)
- Cardiovascular Medicine (2952)
- Dermatology (250)
- Emergency Medicine (440)
- Epidemiology (12757)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4593)
- Geriatric Medicine (420)
- Health Economics (729)
- Health Informatics (2923)
- Health Policy (1069)
- Hematology (389)
- HIV/AIDS (925)
- Medical Education (427)
- Medical Ethics (116)
- Nephrology (469)
- Neurology (4366)
- Nursing (237)
- Nutrition (640)
- Oncology (2274)
- Ophthalmology (647)
- Orthopedics (258)
- Otolaryngology (325)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (501)
- Pediatrics (1197)
- Primary Care Research (498)
- Public and Global Health (6949)
- Radiology and Imaging (1531)
- Respiratory Medicine (915)
- Rheumatology (439)
- Sports Medicine (385)
- Surgery (489)
- Toxicology (60)
- Transplantation (212)
- Urology (181)