
Interpretable machine learning prediction of all-cause mortality

Wei Qiu
1
, Hugh Chen

1
, Ayse Berceste Dincer

1
, Scott Lundberg

2
, Matt Kaeberlein

3
, and

Su-In Lee
1,*

1Paul G. Allen School of Computer Science and Engineering, University of Washington

2Microsoft Research

3Department of Laboratory Medicine and Pathology, University of Washington

*Corresponding: suinlee@cs.washington.edu

Abstract

Prior studies on all-cause mortality traditionally use linear models; however, growing field of explain-

able artificial intelligence (XAI) can improve prediction accuracy over traditional linear models using

complex machine learning (ML) models while still revealing novel insights. We propose the IMPACT

(Interpretable Machine learning Prediction of All-Cause morTality) framework that implements and ex-

plains complex, non-linear ML models by combining a tree ensemble mortality prediction model and a

principled XAI technique. We apply IMPACT to the NHANES (1999-2014) dataset, which enables us to

understand di↵erent subpopulations according to shorter or longer term mortality and younger and older

individuals. Our IMPACT models have higher predictive accuracy than popular pre-existing mortality

risk scores and biological ages. Using individualized feature importance scores, we discover novel risk

predictors (e.g., arm circumference) and interactions between risk predictors (e.g., serum chloride with

age and/or gender). Furthermore, IMPACT provides a novel perspective of reference intervals and may

suggest that the widely accepted reference intervals for serum albumin, mean cell volume and platelet

count may in fact be sub-optimal for health. Finally, in order to ensure that our models are useful to

as broad of a community as possible, we develop and publish a variety of explainable risk scores usable

by individuals with and without medical expertise. The predictive accuracy of IMPACT combined with

the capability of discovering mortality risk predictors and complex relationships demonstrates the value

and utility of XAI in epidemiologic study design.

1 Main

Identification of risk factors and prediction of all-cause mortality have long been central issues in epidemi-

ology. Most prior studies identify risk factors using associations between each predictor and mortality [3,

23, 31]; only a few papers used multi-variate linear models to predict mortality and identify risk factors [55,

12]. In terms of prediction, a variety of linear mortality risk scores have been proposed to help di↵erentiate

unhealthy individuals [18, 11, 48]. Although linear models have historically been popular because they are

interpretable, modern complex machine learning (ML) models often achieve higher predictive accuracy be-

cause they capture interactions among variables in addition to non-linear relationships, such as “U-shaped”

relationship.
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Figure 1: Overview of the IMPACT model and analyses. (A) We use the NHANES (1999-2014)
dataset which includes 151 variables and 47,261 samples. The variables can be categorized into four groups:
demographics, examination, laboratory and questionnaire. We train the model using di↵erent follow-up
times and di↵erent age groups. (B) IMPACT combines tree-based models with an explainable AI method.
Specifically, IMPACT (1) trains tree-based models for mortality prediction using NHANES dataset (2) uses
TreeExplainer to provide local explanations for our models. (C) We illustrate the advantages of interpretable
tree-based models compared to traditional linear models in epidemiological studies. (D) We further analyze
all mortality models and demonstrate the e↵ectiveness of IMPACT to verify existing findings, identify new
discoveries, verify reference intervals, obtain individualized explanations, and compare models using di↵er-
ent follow-up times and age groups. (E) We propose a supervised distance which helps us explore feature
redundancy. We develop a supervised distances-based feature selection method which helps us select pre-
dictive and less-redundant features. (F) We build mortality risk scores that are applicable to professional
and non-professional individuals with di↵erent cost-vs-accuracy tradeo↵s. The individualized explanations
of IMPACT shows the impact of each risk factor for the risk score.
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The field of artificial intelligence (AI) has seen significant advances in supervised learning problems, which

involve predicting an outcome variable (e.g., all-cause mortality) based on a set of features (e.g., individual-

level characteristics). Notable applications of AI in healthcare include diabetic retinopathy detection in

ophthalmology images [15], lung cancer classification from histopathology images [6] and skin cancer clas-

sification [8]. Despite this progress, a major obstacle to the adoption of AI in healthcare is that many of

them are considered “black box”, which refers to the lack of interpretability. The inability to understand

why a model makes a prediction is especially harmful in healthcare applications where the patterns a model

discovers can be even more important than its predictive accuracy. This is especially true in epidemiology,

which aims to identify important variables to guide public health policy or detect risk predictors that war-

rant further study. To address this need, we turn to a variety of techniques to help understand complex ML

models from the emerging area of explainable AI (XAI) [44, 27, 29].

We combine an accurate, complex ML model and a state-of-the-art XAI technique to predict and un-

derstand all-cause mortality. To our knowledge, our study is the first to use complex ML models to do

a systematic and integrated study of the associations between a large number of variables and all-cause

mortality. We present the IMPACT (Interpretable Machine learning Prediction of All-Cause morTality)

framework (Figure 1) and apply it to the NHANES (1999-2014) dataset to reveal novel all-cause mortal-

ity findings. First, using explainable complex ML models rather than linear models, we identify new risk

predictors that are highly informative of future mortality. Second, our flexible models capture non-linear

relationships which provide more comprehensive information about the relationship between feature values

and mortality risk: for example, the “inflection” points of risk predictors could provide a novel perspective

of reference intervals and have significant implications in public health. Third, interpretability points us to

the most important features which enable us to develop highly accurate, e�cient (using less features) and

interpretable mortality risk scores. Furthermore, the individualized explanation of risk scores can help users

understand their biggest risk factors and adjust their lifestyle. Finally, IMPACT risk scores (Supplementary

Table 2) have higher predictive power than popular mortality risk scores [18, 11, 12, 48] and biological ages

[19, 16, 24, 26] (Table 1). All our results and risk scores are available in an interactive website1 in order to

encourage exploration of important risk predictors and to support the use of interpretable individual risk

scores for both individuals with and without medical expertise.

2 Results

2.1 Data cohorts

This study includes the NHANES 1 data samples between 1999-2014. We include demographic, laboratory,

examination, and questionnaire features that could be automatically matched across di↵erent NHANES

cycles. After data preprocessing (Method 1), 47,261 samples with 151 features (Supplementary appendix

2) remain. Follow-up mortality data is provided from the date of survey participation through December

31, 2015. We predict all-cause mortality for two broad categories: (1) follow-up times of 1-year, 3-year,

5-year, and 10-year and (2) age groups of <40, 40-65, 65-80, and �80 years old. For di↵erent age groups, we

predict 5-year mortality. The dataset is randomly divided into training (80%) and testing (20%) sets. The

demographic characteristics and sample size of the data for di↵erent tasks are shown in Figure 2.

1
https://qiuweipku.github.io/IMPACT

1
http://www.cdc.gov/nchs/nhanes.htm

3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2021.01.20.21250135doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250135


Task Age AUC
AUC of
IMPACT

AUC of
IMPACT-20

Mortality risk scores
Intermountain [18] 1-year mortality 18+ 0.84 0.92 0.92
Gagne Index [11] 1-year mortality 65+ 0.79 0.84 0.86
Intermountain [18] 5-year mortality 18+ 0.87 0.89 0.89

Male: 0.80 Male: 0.83 Male: 0.82
Prognostic score [12] 5-year mortality 40-70

Female: 0.79 Female: 0.81 Female: 0.80
Schonberg Index [48] 5-year mortality 65+ 0.75 0.81 0.80

Biological ages
Horvath DNAm Age [19, 24] 10-year mortality 21-84 0.56 0.92 0.91
Hannum DNAm Age [16, 24] 10-year mortality 21-84 0.57 0.92 0.91
DNAm PhenoAge [24] 10-year mortality 21-84 0.62 0.92 0.91
Phenotypic Age [24, 25] 10-year mortality 20-85 0.88 0.92 0.91

Task Age HR
HR of

IMPACT
HR of

IMPACT-20
Horvath DNAm Age [19, 33] Cox regression (mortality) 50+ 1.03 2.40 ** 2.35 **
Hannum DNAm Age [16, 33] Cox regression (mortality) 50+ 0.92 2.40 ** 2.35 **
DNAm PhenoAge [24, 33] Cox regression (mortality) 50+ 1.13 2.40 ** 2.35 **
GrimAge [26, 33] Cox regression (mortality) 50+ 1.91 ** 2.40 ** 2.35 **

Table 1: Comparing the predictive power of popular mortality risk scores and biological ages
with IMPACT. The “AUC” column shows the AUCs reported in the original paper. The “AUC of
IMPACT” column shows the AUCs of the IMPACT model trained with all features. The “AUC of IMPACT-
20” column shows the IMPACT model trained with the selected top 20 features (Method 6). The “HR”
column shows the hazard ratios for all-cause mortality with a standard unit (z-score) increase in epigenetic
age acceleration reported in the original paper. The “HR of IMPACT” column shows the hazard ratio for
all-cause mortality with a standard unit increase in the IMPACT score trained with all features. The “HR
of IMPACT-20” column shows the hazard ratio for all-cause mortality with a standard unit increase in the
IMPACT score trained with the selected top 20 features. (⇤⇤) represents a P-value < 0.01.
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Figure 2: (A)-(D) Histograms of age, gender, race, and body mass index in the NHANES dataset. (E) The
sample size and number of living and deceased samples for di↵erent follow-up times and di↵erent age groups.
For di↵erent age groups, the follow-up time is set to 5 years.

2.2 IMPACT framework

To achieve the high-accuracy and explainable mortality prediction models, we present IMPACT (Figure

1) framework, which combines tree-based models and TreeExplainer [28]. To model all-cause mortality,

we use gradient boosted trees (GBTs). GBTs are nonparametric methods composed of iteratively trained

decision trees. The final ensemble of trees captures non-linearity and interactions between predictors. The

hyperparameters are chosen by GridSearch and 5-fold cross-validation (Method 2). The performance of the

models is measured with the area under the receiver operator characteristic curve (AUROC).

To explain the GBT models, we utilize TreeExplainer [28], which provides a local (i.e., for each subject)

explanation of the impact of input features on individual predictions (Method 3). Specifically, TreeExplainer

calculates exact SHAP [27] (SHapley Additive exPlanations) values, which guarantee a set of desirable
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Figure 3: Advantages of tree-based models for mortality prediction. (A) The area under the ROC
curve (AUROC) of gradient boosted tree models outperforms both linear models and neural networks for
six of our prediction models.(⇤ ⇤ ⇤) represents a P-value < 0.001, (⇤⇤) represents a P-value < 0.01, and (⇤)
represents a P-value < 0.05. P values are computed using bootstrap resampling over the tested time points
while measuring the di↵erence in area between the curves. (B,C) Tree-based models can capture non-linear
relationships and important thresholds. (B) The main e↵ect of uric acid on 5-year mortality. Higher SHAP
value leads to higher mortality risk (C) The main e↵ect of urine albumin on 5-year mortality. (D–G) Tree-
based models can measure feature interaction e↵ects. (D) SHAP value for blood lead level in the 5-year
mortality model. Each dot corresponds to an individual. The color corresponds to the value of a second
feature (i.e. age) that has an interaction e↵ect with blood lead. (E) We can use SHAP interaction values to
remove the interaction e↵ect of age from the model and obtain the SHAP value of blood lead without the
age interaction on 5-year mortality. (F) Plotting just the interaction e↵ect of blood lead with age shows how
the e↵ect of blood lead on mortality risk varies with age. (G) The SHAP interaction value of blood lead vs.
gender in the 5-year mortality model.

theoretical properties. First, SHAP values are additive. They sum to the model’s output, i.e., the log-odds

for GBTs. Second, they are consistent, which means features that are unambiguously more important are

guaranteed to have a higher SHAP value. Therefore, SHAP values are consistent and accurate calculations

of each feature’s contribution to the model’s prediction. In our study, higher SHAP values imply large

contributions to mortality risk. TreeExplainer also extends local explanations to capture feature interactions

directly. By showing the impact of each variable and interactions between variables for local, sample-specific

explanations, we can obtain a comprehensive understanding of why the model made a specific mortality

prediction.

2.3 Advantages of tree-based models

Linear models are commonly used in epidemiology studies because their coe�cients indicate each feature’s

contribution to the model’s prediction [35]. However, more expressive models, such as tree-based models,

can achieve higher predictive accuracy for many datasets by learning non-linear relationships between fea-

tures and the outcome variable. Gradient boosted trees (GBTs) have achieved state-of-the-art performance
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in many domains [9, 51, 43, 62]. We observe the same trend in our study: tree-based models outperform

both linear models and neural networks across all tasks we consider (Figure 3A). The superior prediction

performance of tree models indicates that we can capture signals relevant to mortality, which alternative

approaches could not. Besides predictive power, tree-based models have more advantages compared with

traditional linear models. Our study illustrates the advantages of tree-based models in epidemiology, includ-

ing making minimal assumptions, capturing non-linear relationships, important thresholds and interaction

e↵ects.

Tree-based models make minimal assumptions about the data distribution. Several assumptions

associated with linear models (e.g., linearity, independence, normality, etc.) restrict the features linear models

can use. To satisfy these assumptions, scientists often manually transform non-linear variables before fitting

a model (e.g., log-transformation, discretization of continuous variables, etc.). For instance, to explore

the e↵ect of blood lead on mortality, researchers first discretized blood lead using di↵erent thresholds.

They observed that individuals with blood lead levels higher than the threshold had increased mortality

risk compared to those with lower blood lead levels [30, 34, 47]. In comparison, tree-based models make

minimal assumptions about the data distribution and need no data transformations. Figure 3D shows a

positive relationship between blood lead and 5-year mortality risk. Tree-based models can capture complex

relationships directly without the need of manually transforming the variables.

Tree-based models capture non-linear relationships and important thresholds. Discovering

non-linear relationships is important but challenging for epidemiological research using traditional linear

models. J-shaped and U-shaped associations are two common and meaningful non-linear relationships [32].

However, linear models must use manually transformed features to capture non-linear relationships. As an

example, Suliman et al. showed a J-shaped relationship between uric acid levels and mortality in patients with

stage 5 chronic kidney disease (CKD) using a linear model by dividing uric acid level into three categories

and calculating the hazard ratio for each. Unlike linear models, tree-based approaches can directly capture

non-linear relationships. We observe a U-shaped relationship between uric acid level and all-cause 5-year

mortality predictions in Figure 3B. This relationship di↵ers from the J-shaped one in previous work, possibly

because of categorization, which loses essential information about values within the categories.

Additionally, discovering thresholds (i.e., inflection points beyond which changing a feature’s value has

diminishing returns) is significant in epidemiological analysis. Figure 3C shows that 250 µg/mL is an

important threshold: according to our model, increasing urine albumin generally increases 5-year mortality

risk; however, urine albumin higher than this threshold has almost the same impact on mortality risk.

Tree-based models measure feature interaction e↵ects. Feature interaction examines how the

e↵ect of one feature on the outcome di↵ers across strata of another feature and shows the complex relationship

of two features on the outcome [7]. Tree-based models can naturally capture interaction e↵ects by splitting on

di↵erent features in the same tree. As shown in Figure 3D-F, SHAP dependence plots can be decomposed

into main e↵ects and interaction e↵ects for each sample. Figure 3F highlights a specific interaction: the

relationship of blood lead level to mortality presents di↵erently for young and old individuals. Specifically,

for those with blood lead higher than 0.1 µmol/L, younger individuals have a higher 5-year mortality risk

than older individuals. Figure 3G shows the SHAP interaction e↵ects of gender with blood lead level:

females have a higher 5-year mortality risk than males with blood lead levels higher than 0.24 µmol/L.

The interaction e↵ects of age and gender with blood lead level cannot be clearly identified without SHAP

interaction values because being male or older generally increases mortality risk. These findings highlight

how the interaction e↵ects detected by our model open opportunities for further research.
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2.4 Discoveries from 5-year mortality prediction

Figure 4A shows a summary plot that displays the magnitude, prevalence, and direction of the e↵ect of

the top 20 most impactful features on 5-year mortality prediction (Method 4). This summary plot provides

an integrated explanation of the 5-year IMPACT model. Several features have previously been shown to

be associated with mortality in epidemiological studies. Our results examine and support these studies’

conclusions as well as surface additional discoveries, including novel features, thresholds, and non-linear

relationships.

IMPACT verifies well-studied features associated with mortality. Some of the top 20 most

important features for our 5-year mortality prediction models have been previously identified. For example,

red cell distribution width (RDW), the second most important feature of the 5-year IMPACT model, has

been shown to have a strong positive relationship with mortality by many studies under several conditions

[10, 39, 40, 41]. We also observe the positive relationship between RDW and risk of mortality (Figure

4B); moreover, 12.7% is an important threshold over which RDW manifests a positive e↵ect on mortality.

Serum albumin level’s relation to mortality is also well-studied. Previous studies show that serum albumin

is negatively associated with mortality risk [5, 13, 42]. The relationship shown in Figure 4C matches this

trend. Furthermore, Corti et al. showed that serum albumin level<35 g/L was associated with a significantly

increased risk of mortality compared to serum albumin levels greater than 43 g/L [5]. We observe that 35

g/L and 43 g/L are indeed key inflection points (Figure 4C): serum albumin levels lower than 43 g/L have a

positive relationship with mortality prediction, while those around 35 g/L are associated with a dramatically

increased mortality risk.

IMPACT identifies less well-studied features associated with mortality. Some of the top 20

most important features identified by IMPACT are less appreciated as mortality risk factors in the existing

epidemiological literature. Three of these are arm circumference, platelet count, and serum chloride level.

Figure 4D shows a negative relationship between arm circumference and 5-year mortality, especially for

older people. This negative relationship is consistent with previous work [2, 64]. IMPACT ranks arm

circumference as the fourth most important feature for 5-year mortality prediction, with an importance

ranking that significantly exceeds that of BMI (the 56th). This suggests that smaller arm circumference is

more predictive than BMI for modeling mortality, as in [52].

Figure 4E shows a negative relationship between platelet count, the 13th most important feature, and

5-year mortality. 175 ⇥ 1, 000 cells/µL is an important threshold; platelet count lower than that level

is associated with dramatically increased mortality risk. Serum chloride is also inversely related to 5-year

mortality (Figure 4F). The normal adult value for chloride is 98-106 mmol/L. We observe that serum chloride

lower than 98 mmol/L is associated with sharply increased mortality risk. In Figure 4G–H, we plot the

interaction e↵ect of age and sex with serum chloride level. This analysis reveals that younger people and

females with low serum chloride have a higher mortality risk than older people and males. The interaction

e↵ect of age and serum chloride shows that early rather than late-onset low chloride level has a greater e↵ect

on the model.

IMPACT can provide additional perspective to laboratory reference intervals. Reference

3
https://www.webmd.com/hepatitis/ggt-test

4
https://medlineplus.gov/ency/article/003544.htm

5
https://www.ucsfhealth.org/medical-tests/blood-di↵erential-test

6
https://www.ucsfhealth.org/medical-tests/blood-di↵erential-test

7
https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/610525

8
https://www.ucsfhealth.org/medical-tests/lead-levels—blood

9
https://cllsociety.org/toolbox/normal-lab-values/
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Figure 4: Combining 5-year mortality prediction gradient boosted trees models and local expla-
nations to achieve significant discoveries about the entire model and individual features. (A)
SHAP summary plot for the gradient boosted trees trained on the 5-year mortality prediction task. The plot
shows the most impactful features on prediction (ranked from most to least important) and the distribution
of the impacts of each feature on the model output, which includes a set of plots where each dot corresponds
to an individual. The colors represent feature values for numeric features: red for larger values, and blue
for smaller. The thickness of the line that is comprised of individual dots is determined by the number of
examples at a given value. A negative SHAP value (extending to the left) indicates reduced mortality risk,
while a positive one (extending to the right) indicates increased mortality risk. (B,C) IMPACT can verify
well-studied features associated with mortality. (B) The main e↵ect of red cell distribution width on 5-year
mortality. (C) The main e↵ect of serum albumin on 5-year mortality. (D-H) IMPACT can identify less well-
studied features associated with mortality. (D) The SHAP value for arm circumference in 5-year mortality
model. (E) The main e↵ect of platelet count on 5-year mortality. (F) The main e↵ect of serum chloride on
5-year mortality. (G) The SHAP interaction value of serum chloride vs. age in the 5-year mortality model.
(H) The SHAP interaction value of serum chloride vs. gender in the 5-year mortality model.
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Feature Reference Interval
Relative Risk Percentage (RRP)

1-year 3-year 5-year 10-year
Gamma glutamyl transferase 0-30 U/L 2 16.93% -4.57% -0.97% -6.04%
Globulin, serum 20-35 g/L 3 5.39% 7.95% 14.73% 4.59%
Lymphocyte percent 20%-40% 4 15.63% 7.02% 6.55% 10.81%
Segmented neutrophils percent (%) 40%-60% 5 9.45% 33.95% 1.58% 24.56%

Albumin, serum 35-50 g/L 6 28.56% 49.70% 59.77% 93.48%
Blood lead 0-0.48 umol/L 7 100.00% 94.71% 100.00% 100.00%
Mean cell volume 80-100 fL 8 82.80% 75.82% 83.92% 57.26%
Platelet count 150-450 ⇥1,000 cells/uL 9 100.00% 31.31% 46.77% 96.17%

Table 2: Providing additional perspective to laboratory reference intervals. The table lists the
reference interval and relative risk percentage (RRP; Method 1 3.3) of the selected laboratory features. RRP
measures the relative risk of the feature values within the reference interval compared to the relative risk of
all values.

Refer ence inter val : 0-30 U/L Refer ence inter val : 20-35 g/L Refer ence inter val : 20%-40% Refer ence inter val : 40%-60%

(A) (B) (C) (D)

(E)

Refer ence inter val : 35-50 g/L Refer ence inter val : 0-0.48 um ol /L Refer ence inter val : 80-100 fL Refer ence inter val : 
150*1,000-450*1,000 cel l s/uL

(F) (G) (H)

Figure 5: E↵ect of varying laboratory feature values on 5-year mortality risk. These partial
dependence plots show the change in relative 5-year mortality risk (Method 1 3.3) for all values of a given
laboratory feature. The grey histograms on each plot show the distribution of values for that feature in the
test set. The green shaded region shows the reference interval of each feature.

interval (RI) is the range of values that is deemed normal for a physiologic measurement in healthy persons

[22] It is the most common decision support tool to interpret patient laboratory test results. RIs enable

di↵erentiation of healthy and unhealthy individuals [38, 21]. Hence, the quality of the RIs is as crucial as

the quality of the result itself. RIs in use today are most commonly defined as the central 95% of laboratory

test results in a reference population. Unfortunately, this definition does not consider mortality or disease

risk, which may lead to misdiagnosis since RIs are often used to identify unhealthy individuals. The partial

dependence plots of IMPACT models directly reflect the e↵ects of the features on mortality risk, which

provides an alternative perspective for identifying inappropriate reference intervals with mortality/disease

relevance.

We define the relative risk percentage (RRP) that measures the relative risk (Method 1 3.3) of the
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Figure 6: Identifying important discoveries for mortality prediction from tree-based models
using di↵erent follow-up times. (A) Relative importance of input features in 1-, 3-, 5- and 10-year
mortality models. For each model, the figure shows the 20 most important features of prediction (ordered
by the importance). The purple line indicates that the feature is in the top 20 features of two models. Blue
and red lines indicate the feature is in the top 20 features of one model, but not in the top 20 features of
the other. (B) The SHAP value of serum potassium in the 1-year mortality model. (C) The SHAP value
of serum potassium in the 5-year mortality model. (D) The SHAP value of serum sodium in the 1-year
mortality model. (D) The SHAP value of serum sodium in the 5-year mortality model.

feature values within the reference interval compared to the relative risk of all values (Table 2). A higher

RRP indicates that the feature values within the reference interval may lead to high mortality risk, which

we need to pay special attention to. The first four features in Table 2 have relatively low 5-year mortality

RRP. From Figure 5A-D, we observe that the values of these features within the reference interval have low

5-year relative mortality risk; the values outside reference interval may lead to increased 5-year mortality

risk. Therefore, IMPACT confirms the reference intervals of these four features as optimal for mortality risk.

In contrast, the RRP of the last four features in Table 2 are high. Figure 5E-H also shows that the relative

5-year mortality risk of the values within the reference interval is high compared to the maximum relative

risk of all values. Hence, IMPACT identified the divergence where reference intervals appear to be poorly

tuned to mortality risk, suggesting that these reference intervals may in fact be sub-optimal for health.

2.5 Discoveries for mortality prediction using di↵erent follow-up times

The relationship between each feature and mortality may change for di↵erent models. For instance, com-

paring important features between IMPACT models using di↵erent follow-up times can reveal features that

are only predictive of short-term mortality, not longer-term mortality (and vice versa).

IMPACT identifies trends for 1-year, 3-year, 5-year and 10-year mortality prediction mod-

els. Figure 6A shows the top 20 most important features and relative importance of input features in IM-

PACT’s 1-year, 3-year, 5-year, and 10-year mortality prediction models. Feature importance rankings change
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significantly between these four models. Some features are important for all four (e.g., age, RDW, and urine

albumin level). Some features become more important over time (e.g., platelet count, whose importance

ranking is 75 for the 1-year model and 12 for the 10-year model). Other features become less important over

time (e.g., serum potassium, whose importance ranking is 17 for the 1-year model and 42 for the 10-year

model). These results provide a more comprehensive understanding of shorter- and longer-term mortality

risk, which can facilitate the investigation of mechanisms underlying risk predictors and potentially help

validate interventions.

The relationship between each feature and mortality may change for models that predict di↵erent mortal-

ity outcomes or utilize di↵erent subsamples of the general population. For instance, Figure 6B-C shows the

SHAP value for serum potassium in IMPACT’s 1-year and 5-year mortality prediction models. The finding

that serum potassium lower than 3.5 mmol/L and higher than 4.0 mmol/L are associated with increased

mortality risk has been previously observed [1, 14, 36]. Interestingly, for the 1-year model, hyperkalemia

(high potassium) has a higher mortality risk than hypokalemia (low potassium). For the 5-year model,

hypokalemia has the same or higher mortality risk than hyperkalemia. Figure 6D shows that serum sodium

higher than 139 mmol/L increases 1-year mortality risk, and low serum sodium with negative SHAP val-

ues decreased mortality risk. However, the relationship di↵ers completely in the 5-year mortality prediction

model (Figure 6E): hyponatremia (serum sodium <135 mmol/L) is associated with a higher 5-year mortality

risk. This type of insight, especially regarding the di↵erences of non-linear trends, is not apparent using

linear models.

Likewise, we can compare models trained on distinct subpopulations ( e.g., samples in di↵erent age

groups). The di↵erences between these models can help researchers identify risk predictors relevant to each

subpopulation. Comparing models in this way can provide epidemiological insights that may guide policy for

specific at-risk populations. The discoveries for mortality prediction using di↵erent age groups are discussed

in Supplementary appendix 1.

2.6 Exploring feature redundancy using supervised distance

Often features in datasets are partially or fully redundant with each other, in the sense that a model could

use either feature and still achieve the same accuracy. It is important to be aware of redundant features

when we interpret a model because these features may include the same information about the output and

thereby split the importance of this information. To this end, we propose a supervised distance, which helps

us explore and better understand redundant features (Method 5). Building upon supervised distance, we

develop a feature selection method to maximize accuracy and minimize redundancy.

Supervised distances measures feature redundancy and identifies redundant groups of fea-

tures. Researchers often use unsupervised methods such as some form of correlation-based clustering to

find dependent features [61, 54]. However, when we have a specific prediction task in mind, we would like

to measure the feature redundancy with respect to the task. The supervised distance can be an accurate

measure of this feature redundancy. (Method 1 5.1). Specifically, supervised distance measures the similarity

of the two features’ information about the prediction task. It is scaled roughly between 0 and 1, where 0

distance means the features are perfectly redundant regarding the prediction task and 1 means they are not

redundant at all.

To identify groups of redundant features, we hierarchically cluster all features according to supervised

distance (Supplementary Figure 3; Method 1 5.1). Redundant features that have the same information

about the output group together. For example, arm circumference, the fourth most important feature of
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Figure 7: Exploring features redundancy using supervised distance. (A) The feature importance
ranking of the BMI-related features in original models and reducing redundancy models , and the AUC
of the single feature models confounded by age and gender. (Method 1 5.2) (B) The feature importance
ranking of the selected laboratory features in original models and reducing redundancy models and the AUC
of the single feature models confounded by age and gender. (C) The AUC of the models using the selected
feature sets and the minimum feature redundancy within the selected feature sets when running supervised
distance-based feature selection. The purple dashed line shows the AUC of the model trained on age and
gender. The pink dashed line indicates the feature set we select for further analysis. (D) SHAP summary
plot for the gradient boosted trees trained on the selected 90 features for the 5-year mortality prediction.

5-year IMPACT model, is grouped with weight-related features: BMI, waist circumference, weight, etc.

These weight-related features all contain similar information about 5-year mortality. To further explore the

predictive ability of the features, we train models using one weight-related feature and all non-weight-related

features (reducing redundancy models) and models using one weight-related feature in addition to age

and gender (single feature models) (Method 1 5.2). Arm circumference is the most predictive weight-

related feature across all settings (Figure 7A). These results indicate that arm circumference may be more

informative than other weight-related features with respect to all-cause mortality. Another example would be

the cluster that includes many blood test features (Figure 7B). Similar to arm circumference, serum albumin

is the most predictive feature among these blood test features. In summary, using supervised distance, we

can easily identify redundant feature groups and select the most representative feature based on predictive

power. These selected features can be the strongest risk predictors because they have strong predictive power

and can represent a number of features.

Supervised distance-based less-redundant feature selection. To better address the redundancy

in the dataset, we propose a recursive feature selection method based on the supervised distance to select

the predictive and less-redundant feature sets (Method 1 5.3; Supplementary appendix 2). Figure 7C shows
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the predictive power and minimum supervised distance of subsets of features refined by the feature selection

approach. We can see that as the number of features reduces, the predictive performance drops, and the

feature redundancy reduces (as indicated by an increasing minimum supervised distance). The figure shows

that when using 90 features, the model can achieve good predictive performance (AUROC = 0.8845) and

the minimum supervised distance within the features is high (0.9301). Figure 7D shows the summary plot of

the top 10 features in the 5-year mortality prediction model using the selected 90 features. Since there is less

redundancy in the selected features, we mitigate the issue of redundant features splitting credit. It allows

us better to explore the e↵ect of important risk predictors on mortality. In our low redundancy model, arm

circumference is selected to represent the weight-related features and still receives high importance. Further-

more, we find that “requiring special healthcare equipment”, one of the top 10 features in the model trained

on all features, is removed from the feature list because it is redundant with “general health condition”. In

summary, our supervised distance-based feature selection method helps remove the redundant features and

select the predictive and less-redundant feature set.

2.7 Highly accurate and e�cient interpretable mortality risk scores

A mortality risk score can help individuals monitor their health status, help clinicians stratify high-risk

patients, and help public health organizations guide policy. Most prior mortality risk scores are built with

linear models, such as logistic regression, and linear hazard model [12, 18]. However, compared with tradi-

tional models, tree-based models achieve higher predictive performance, which can stratify patients better

than linear models (Supplementary Table 1). Besides prediction performance, we also need to consider the

feature collection cost. There is a tradeo↵ between collecting less features (which is less costly) and the

model’s performance (cost-vs-accuracy tradeo↵s). Moreover, the cost of features is di↵erent for di↵erent

users. For example, blood test features are easily collected by clinicians, but for the public, questionnaire

features and examination features are more feasible to obtain at home. Furthermore, the users may want to

know which features contribute more to the risk score beside the risk score itself. To address these problems,

we build interpretable tree-based mortality risk scores with di↵erent cost-vs-accuracy tradeo↵ and di↵erent

types of features for the general public (demographic, examination, and questionnaire features) and medical

professionals to use (demographic, laboratory features and features from common test panels) (Method 6;

Supplementary appendix 2). Compared with previous mortality risk scores, ours are more interpretable,

more accurate, applicable to more users, and flexible with di↵erent cost-vs-accuracy tradeo↵s.

IMPACT develops highly accurate and e�cient 5-year mortality risk scores. The predicted

probability of IMPACT models can be directly used as mortality risk scores (IMPACT risk scores). We did

a temporal validation of the risk scores by assessing their performances in the samples collected in NHANES

2009-2014. For comparison, we train linear and tree-based Cox proportional hazard models widely used in

previous work. (Method 1 6.1) To find less costly but nearly as accurate models, we select the features

using recursive feature elimination (RFE; Method 1 6.2). Moreover, we compare IMPACT risk scores with

Intermountain sex-specific risk scores [18] 10 (Method 1 6.3). The models are evaluated on di↵erent gender

groups.

In Figure 8A and B, we show the AUROC of the 5-year mortality risk scores of female samples (See

Supplementary Figure 4 for male results) in the test set and the temporal validation set. We can see that

the IMPACT model with only 20 features obtains an AUROC of 0.8971, which is almost as same as the

performance of the model using all features (AUROC = 0.9030), and using fewer than 20 features leads to a

10
https://intermountainhealthcare.org/IMRS/
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Figure 8: Developing highly accurate and e�cient interpretable 5-year mortality risk scores.
(A)–(B) The AUC of the models using di↵erent feature sets after recursive feature elimination. Lines are
mean performance over 1000 random train/test splits, and shaded bands are 95 percent normal confidence
intervals. (A) The AUC of the models tested on the female group in the test set of NHANES 1999-2008. (B)
The AUC of the models testing on the female group in the temporal validation set (NHANES 2009-2014).
(C)–(D) IMPACT can analyze individualized mortality risk scores. (C) The individualized explanation for
an individual who is alive after 5 years. The output value is the risk score for that individual. The base value
is the mean risk score, i.e., the score that would be predicted if we did not know any features for the current
output. The features in red increase mortality risk, and those in blue decrease it. (D) The individualized
explanation for a sample who is deceased after 5 years.

dramatic accuracy drop. Figure 8A and B also show that IMPACT models achieve better performance than

linear and tree-based Cox proportional hazard models. Furthermore, we can see that IMPACT risk score

using the laboratory features (AUROC = 0.8881) and the risk score using the questionnaire and examination

features (AUROC = 0.8835) both get acceptable predictive performance. The IMPACT risk score using the

features from common test panels can achieve higher AUROCs than the intermountain risk score, which

uses CBC and BMP panels features. With the models trained using di↵erent numbers of features, users can

measure more risk predictors to use more accurate mortality prediction models. Figure 8B shows that the

performance of our models only drops a little on the temporal validation set, which can indicate that our
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risk scores have generalization ability to some extent. The selected top 20 features and features from CBC

and BMP panels are listed in Supplementary Table 2. In summary, we build IMPACT risk scores that are

applicable to professional and non-professional individuals with di↵erent cost-vs-accuracy tradeo↵s.

IMPACT exposes individualized mortality risk score explanations. TreeExplainer can help re-

searchers analyze the prediction for each individual and illustrate each features’ contribution to the mortality

risk score. We explain the mortality prediction model in terms of its probability predictions (risk scores)

Method 1 6.1. Figure 8C,D shows individualized explanations for two individuals from the model using the

top 20 features. The first individual (Figure 8C) was alive after 5 years. From the figure, we observe that IM-

PACT predicted that the individual’s 5-year mortality risk score was 0.02, lower than the average predicted

risk (i.e., base value). There are features that increase mortality risk, such as red cell distribution width, and

features that decrease mortality risk, such as urine albumin level. For this individual, the features that drive

down mortality risk outweigh those that increase it. The second individual (Figure 8D) was deceased after 5

years, and the model’s predicted mortality probability is 0.61, much higher than the average predicted risk.

The top three features that increase this individual’s risk are high age, high red cell distribution width, and

high urine albumin concentration. These individualized explanations can help individuals understand their

health status, adjust their lifestyle, and help doctors give personalized treatment and implement precision

medicines.

3 Discussion

To our knowledge, IMPACT is the first study that combines high-accuracy complex ML models and state-

of-the-art local explanation methods to do a systematic study of all-cause mortality. In epidemiology, high

accuracy is important, but it is not enough; instead, explaining models to humans is essential for drawing

epidemiological hypotheses [56, 57]. IMPACT’s combination of accuracy and explanation aims to optimize

accuracy while also gaining insight into complex interrelations between mortality and individual’s features.

Using 151 features in NHANES 1999-2014, we build tree-based mortality prediction models and explore

the e↵ect of those features on mortality for di↵erent follow-up times and age groups. Importantly, we

demonstrate the value and significance of explaining complex ML prognostic models. IMPACT allows us

to capture both non-linear e↵ects and interaction e↵ects that are di�cult to uncover with linear models.

These results help us verify well-studied findings (e.g. the relationship of red cell distribution width and

albumin with mortality) as well as identify new ones (e.g. the important risk predictors arm circumference,

platelet count and serum chloride, and the complex interactions of the features). One pitfall to inferring

relationships between determinants and an outcome are relationships between the determinants themselves

(redundancy). To address this, we proposed a supervised distance and feature selection approach which

we utilize to select the minimally redundant feature sets. Lastly, we build explainable mortality risk scores

for both the general public and medical professionals with di↵erent tradeo↵s between feature collection

cost and the model’s performance. These scores can help individuals improve self-awareness of their health

status and help clinicians identify patients with high mortality risk to target with specific interventions.

In the paper, we only present a small part of our findings. All our results and risk scores are available in

an interactive website11 where the associations and interaction can be explored in detail to generate new

research hypotheses.

The present study shows a negative relationship between arm circumference and mortality. Our clustering

11
https://qiuweipku.github.io/IMPACT
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method groups arm circumference with BMI and other weight-related features, indicating that these features

share information about mortality. Several prior studies have found a U-shaped association between BMI

and mortality, where very low or very high BMI is associated with significantly greater mortality risk [17, 2].

This U-shaped relationship may be the result of compound e↵ects from body fat and fat-free mass. As upper

arm circumference is an indicator of fat-free mass [64, 2], it may be the case that fat-free mass is driving the

inverse correlation between arm circumference and mortality risk. Larger arm circumference is expected to

be associated with greater muscle mass, while smaller arm circumference may reflect muscle deterioration

along with diminished nutritional status or malnutrition [45, 59]. The importance of arm circumference in

IMPACT is consistent with previous studies, which show that low arm circumference was more e↵ective than

low BMI in predicting follow-up mortality risk in older people [58, 45, 53].

One limitation of IMPACT is that the relationships and interactions detected by our model cannot

be claimed to be causal. This is a common problem in epidemiological studies using observational data.

The purpose of this study is not to address causality, but rather to do a systematic study of mortality

associations with the NHANES population. In particular, one of the primary obstacles to capturing causal

e↵ects with observational data and predictive models are confounding variables. In order to condition on

confounders (and potential surrogate confounders), it is often desirable to include as many features as possible

in the model [46]. Conversely, we may want to remove colliders and mediators that skew the real e↵ect of

treatment features of interest. Our solution to redundancy, supervised distance, can potentially help narrow

down related features for which domain experts can identify colliders, mediators, and confounders. This is a

potential future research question which takes a step in the direction of making explanations from complex

models causal.

As another limitation, our study is performed on NHANES 1999-2014, which is designed to assess the

health status of participants in the United States. The conclusions and discoveries can generalize to other

populations only when the distribution of variables and mortality rates are similar to those in the U.S. as

a whole. Further external validation of our mortality models on datasets from non-U.S. populations should

be undertaken to increase the generalizability of these findings.

Over the past several years, a variety of ML approaches have been applied in the field of aging research

to develop “clocks” that are capable of predicting chronological age of an individual based on di↵erent

phenotypic features [63]. The most common of these are the epigenetic clocks which have identified patterns

of methylation on DNA that change with age and can be used to predict chronological age with high

accuracy across a variety of di↵erent species and tissue types [20, 37]. Other clocks based on gene expression,

metabolites, facial features, telomere length, etc. have also been described [60]. E↵orts have also been made

to use these clocks to predict an individual’s biological age, which may di↵er from their chronological age

if they are aging more rapidly or slowly than the general population. Such “biological aging clocks” are

expected to reflect the underlying health status of the individual and be useful for predicting future health

outcomes and mortality. Although we have not yet attempted to validate IMPACT as a tool for assessing

biological age, those individuals with significantly lower IMPACT mortality risk than expected for their

chronological age would be predicted to have a lower biological age and vice-versa. Because IMPACT is

trained to predict all-cause mortality rather than fit to chronological age, it will be of interest to determine

how IMPACT compares to these various clocks in predictive capacity, particularly if done for the same cohort

of individuals.

Prognosis research using complex ML models will likely increase over the coming years as ML techniques

continue to rapidly develop. However, “black box” ML models that predict without explaining, are di�cult
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for clinicians to trust and hard to extract meaningful information from. Therefore, the combination of

complex ML models and ‘explainable artificial intelligence’ (XAI) is necessary and urgent. IMPACT takes a

significant step towards XAI for mortality prediction. This study’s improvement in predictive accuracy and

explanation of complex ML models warrants further exploration for other epidemiological outcomes.
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Method

Method 1 Data collection and processing

The National Health and Nutrition Examination Survey (NHANES) from the National Center for Health

Statistics (NCHS) 1 conducts interviews and physical examinations to assess the health and nutrition data

for all ages in the United States. The interviews include demographic, socioeconomic, dietary, and health-

related questions. The examinations include medical, dental, physiological measurements, and laboratory

tests administered by highly trained medical personnel. Since 1999, data were collected and released at 2-

year intervals. Each year NHANES examines a nationally representative sample of roughly 5,000 individuals

across the Unites States. In this study, we include NHANES data sampled between 1999 and 2014. All-cause

mortality is ascertained by a linked NHANES mortality file that provides follow-up mortality data from the

date of survey participation through December 31, 2015.

Our study includes samples with known mortality status who participated in NHANES 1999-2014 (n =

47, 261). We include all demographic, laboratory, examination, and questionnaire features that could be

automatically matched across di↵erent NHANES cycles. We exclude variables that are missing for more

than 50% of the participants and highly correlated features with correlations greater than 0.98; after filtering

and one-hot encoding, 151 features after one-hot encoding remain (Supplementary appendix 2). We impute

missing data using MissForest [49], a nonparametric random forest-based multiple imputation method for

mixed-type data, with seven iterations. We predict all-cause mortality for two broad categories: (1) follow-up

times of 1-year, 3-year, and 5-year and (2) age groups of <40, 40-65, 65-80, and �80 years old. For di↵erent

follow-up times, we remove samples with unconfirmed mortality status. For di↵erent age groups, we predict

5-year mortality. The demographic characteristics and sample size of the data for di↵erent tasks are shown

in Reference Table 1.

Method 2 Predictive modeling

To model mortality, we use gradient boosted trees (GBTs). GBTs are nonparametric methods composed

of iteratively trained decision trees. The final ensemble of trees captures non-linearity and interactions

between predictors. The dataset is randomly divided into training (80%) and testing (20%) sets. We use the

implementation XGBoost [4] 12 with a learning rate set to 0.002 , subsample ratio set to 0.5 and 10,000 trees of

max depth 3. For comparison, we also train logistic regression models and deep neural networks. For logistic

regression, we use L2 regularization. The L2 regularization weight was set to 100. For neural networks,

we use a single layer with 1,000 nodes, and max iteration set to 1,000. The hyperparameters specified

above are chosen by GridSearch and 5-fold cross validation. Other hyperparameter values are left at their

default values. Models’ performance is measured with the area under the receiver operator characteristic

curve (AUROC). We bootstrap the test set to assess the statistical significance of the di↵erence in AUC for

pairs of models. Specifically, we resample with replacement from the test set 1,000 times and compare the

models’ performance on resampled test sets. We report a p-value which is the percentage of time that logistic

regression or the neural network’s performance is better than or equal to gradient boosted trees, divided by

the number of resampled test sets. All models are built using the Scikit-learn package in Python 3.7.

1
http://www.cdc.gov/nchs/nhanes.htm

12
https://xgboost.readthedocs.io/en/latest/python/index.html
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Method 3 Model interpretation

To explain the GBT models, we utilize TreeExplainer [28], which provides a local explanation of the impact

of input features on individual predictions. Specifically, TreeExplainer calculates exact SHAP [27] (SHapley

Additive exPlanations) values for tree-based models. When explaining the mortality prediction models, we

randomly select 10,000 background samples from the training set and 5,000 foreground samples from the

test set.

Method 1 3.1 SHAP (SHapley Additive exPlanation) values

SHAP (SHapley Additive exPlanation) values attribute to each feature the change in the expected model

prediction when conditioning on that feature. The change of the model’s prediction when the feature is

masked is recorded across all possible subsets of features, yielding an average change in prediction resulting

from the inclusion of a feature in the model:

�i(f, x) =
X

R2R

1

M !

⇥
fx(P

R
i [ i)� fx(P

R
i )

⇤
, (1)

where �i is the feature attribution (SHAP value) of feature i in model f for data point x, R is the set of

all feature permutations, PR
i is the set of all features before i in the ordering R, M is the number of input

features, and fx is an estimate of the conditional expectation of the model’s prediction: fx(S) ⇡ E[f(x) | xS]
where xS is the set of observed features.

SHAP values which guarantee a set of desirable theoretical properties, including additivity and consis-

tency. Additivity states that when approximating the original model f for a specific input x, the SHAP

values sum up to the output f(x):

f(x) = �0(f) +
MX

i=1

�i(f, x), (2)

The sum of feature attributions (SHAP values) matches the original model output f(x), where �0(f) =

E[f(z)] = fx(;). Consistency states that if a model changes so that some feature’s contribution increases or

stays the same regardless of the other inputs, that input’s attribution should not decrease. Therefore, SHAP

values are consistent and accurate calculations of each feature’s contribution to the model’s prediction.

Method 1 3.2 SHAP interaction values and main e↵ects

The SHAP interaction e↵ects is based on the Shapley interaction index from game theory. While standard

feature attribution results in a vector of values, one for each feature, attributions based on the Shapley

interaction index result in a matrix of feature attributions. The main e↵ects are on the diagonal and the

interaction e↵ects on the o↵-diagonal. The SHAP interaction values are defined as:

�i,j(f, x) =
X

S✓M\{i,j}

|S|!(M � |S|� 2)!

2(M � 1)!
ri,j(f, x, S), (3)

when i 6= j, and

rij(f, x, S) = fx(S [ {i, j})� fx(S [ {i})� fx(S [ {j}) + fx(S). (4)
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where M is the set of all M input features. In Equation 3 the SHAP interaction value between feature i

and feature j is split equally between each feature so �i,f (f, x) = �j,i(f, x) and the total interaction e↵ect

is �i,f (f, x) + �j,i(f, x).

The main e↵ects for a prediction can then be defined as the di↵erence between the SHAP values and

the o↵-diagonal SHAP interaction values for a feature:

�i,i(f, x) = �i(f, x)�
X

j 6=i

�i,j(f, x). (5)

Method 1 3.3 Partial dependence plots and additional perspective to reference

interval

We use the partial dependence plots to show the change in mortality risk for all values of a laboratory

feature. The partial dependence plot shows the marginal e↵ect one features have on the predicted outcome

of a machine learning model. The relative mortality risk is defined as the average value of the model predicted

probability when we fix a specific feature to a given value divided by the average value of the model predicted

probability. The relative risk percentage is the maximum relative risk for the values within the reference

interval divided by the maximum relative risk for all values of a laboratory feature. High relative risk

percentage indicates that the values within the reference interval have a relatively high mortality risk. The

partial dependence plots of selected laboratory feature values on 1-, 3-, and 10-year mortality risk are shown

in Supplementary Figure 5.

Method 4 Model interpretation plots

In this section we describe a number of plotting types for model explanation visualization.

SHAP value, SHAP main e↵ect value and SHAP interaction value plots In SHAP value/SHAP

main e↵ect value/SHAP interaction value plots, every point corresponds to a single sample where the x-axis

is the value of the feature and the y-axis is the SHAP value/SHAP main e↵ect value/SHAP interaction

value. The coloring of the points often denotes the value of a separate feature.

Summary plot Summary plots show the feature attributions (SHAP values) for many samples and multi-

ple features in order of global feature importance (the mean absolute SHAP values). Summary plots stack

multiple subplots plots for each feature. For the feature plots, every point corresponds to a single sample

where the x-axis is the feature attribution value and the y-axis is vertical dispersion representing the fre-

quency of samples with a particular feature attribution value. Finally, the color of each point represents the

normalized feature value, with red representing a high value and blue representing a low one. Intermediary

feature values are interpolations between red and blue.

Individualized explanation plot Individualized explanation plot shows the feature attributions (SHAP

values) for an individual in terms of how they drive the model’s prediction for the individual away from the

average model prediction across the baseline distribution. The width of the bars indicate the SHAP value

with red indicating a positive a↵ect and blue indicating a negative one. The features corresponding to the

largest bars are below with their actual values for the individual.
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Method 5 Supervised distance

Method 1 5.1 Supervised distance and hierarchical clustering

Supervised distance can accurately measure feature redundancy based on a specific prediction task. As

Supplementary Figure 2 shows, to calculate the supervised distance between feature i and feature j, we

firstly train a uni-variate GBTs model to predict the label (e.g. 5-year mortality in our study) using feature

i. Then, we can obtain the Predictioni which is the output of the fitted uni-variate GBTs. Next, we fit

another uni-variate GBTs to predict Predictioni using feature j. We define the output of the new GBTs as

Predictionj
i . All hyperparameter values of the uni-variate GBTs are set to their default values. Following

the same above steps, we can obtain Predictioni
j . The supervised distance between feature i and feature j

(supervised distance(i,j)) is defined as:

supervisedR2(i, j) = max(0, 1�mean(
(Predictioni � Predictionj

i )
2

var(Predictioni)
)) (6)

supervised distance(i, j) = max(1� supervisedR2(i, j), 1� supervisedR2(j, i)) (7)

where var(x) is the variance of the vector x, mean(x) is the average of the vector x. Supervised distance is

scaled roughly between 0 and 1, where 0 distance means the features perfectly redundant and 1 means they

are completely independent.

To explore the redundant feature groups, we hierarchically cluster all features according to the supervised

distance. Specifically, we use complete linkage hierarchical clustering which merges in each step the two

clusters whose merger has the smallest diameter. The hierarchical clustering tree is shown in Supplementary

Figure 3.

Method 1 5.2 Redundant feature groups experiments training details

Reducing redundancy model To identify the most representative feature in a redundant feature group,

we train GBTs using one feature in the redundancy group and all features outside the group for 5-year

mortality prediction. Then we compare the feature importance ranking of the redundant features by calcu-

lating the mean absolute SHAP values using TreeExplainer. The hyperparameters of the GBTs are chosen

by GridSearch and 5-fold cross validation. The max depth is selected from {1, 3, 5, 7, 9} and the subsample

ratio is selected from {0.2, 0.5, 0.8, 1.0}. Other hyperparameter values are left at their default values.

Single feature model We further analyze the predictive power of the redundant features by fitting 5-

year a GBTs using one feature in the redundant feature group. Specifically, we use one feature in the

redundant feature group and two important confounders, age and gender, to train a GBTs for 5-year mor-

tality prediction. All hyperparameter values are set to their default values. We compare the AUCs of the

models. We bootstrap the test set for 1,000 times and compare the models’ performance on resampled test

sets. The averages of the AUCs are reported.

Method 1 5.3 Supervised distance-based feature selection

We propose a supervised distance-based feature selection method to select predictive and less-redundant

feature sets. The workflow of our feature selection method is shown in Supplementary Figure 2. The dataset
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is randomly divided into training (80%) and testing (20%) sets. Firstly, we fit a GBTs for 5-year mortality

prediction on all features using the training set and rank the features by mean absolute SHAP values from

TreeExplainer. The hyperparameters of the GBTs are chosen by GridSearch and 5-fold cross validation.

The max depth is selected from {1, 3, 5, 7, 9} and the subsample ratio is selected from {0.2, 0.5, 0.8, 1.0}. The
max number of trees is set to 1000. We use 20% of the training samples as validation set for early stopping.

The number of early stopping rounds is set to 100. Since age and gender are important confounders, we

would like to keep them in the selected feature set. Therefore, we cluster features except age and gender

into a specific number of groups using supervised distances-based hierarchical clustering and select the most

important feature in each cluster. Then, we add age and gender to the selected feature set and re-fit the

model. Next, we rerun the clustering using the new feature set except age and gender. This process is

repeated until all remained features cluster to a single group. In every iteration, we remove 5 features. The

models are evaluated on the testing set with bootstrapping for 1,000 times. We report the average of the

AUCs and the minimum supervised distance within the selected feature sets. The selected features in each

iteration are listed in Supplementary Appendix 1.

Method 6 5-year mortality risk scores

Method 1 6.1 Mortality risk scores training details

IMPACT mortality risk scores is defined as the prediction of the 5-year mortality prediction models. For

comparison, we train linear 13 and gradient boosted tree-based Cox proportional hazard models 14. We did

a temporal validation of the risk scores by assessing their performances in the samples collected in 2009-

2014 (N = 7, 034). Specifically, the samples collected in 1999-2008 (N = 28, 820) are randomly divided

into training (80%) and testing (20%) sets. To compare with Intermountain gender-specific risk scores, we

evaluate the models on di↵erent gender groups. The models are trained on the whole training set and evaluate

on di↵erent gender groups in the testing set. Furthermore, considering the di↵erent feature collection cost

for general public and medical professionals, we build the risk scores using di↵erent feature sets. For general

public, the models are trained on all demographics, questionnaire features and examination features that are

accessible at home for general public, For medical professionals, the models are trained on all demographics

and laboratory features. All trained models are evaluated on di↵erent gender groups of the samples collected

in 2009-2014 for temporal validation.

The hyperparameters are chosen by GridSearch and 5-fold cross validation. For XGBoost 5-year mortality

prediction models, the max depth is selected from {1, 3, 5, 7, 9} and the subsample ratio is selected from

{0.2, 0.5, 0.8, 1.0}. The max number of trees is set to 1000. We use 20% of the training samples as validation

set for early stopping. The number of early stopping rounds is set to 100. For linear Cox proportional

hazard models, the regularization parameter ↵ is selected from {0.01, 0.1, 1, 10, 100}. For tree-based Cox

proportional hazard models, the max depth is selected from {1, 3, 5, 7, 9} and the subsample ratio is selected

from {0.2, 0.5, 0.8, 1.0}. Other hyperparameter values are left at their default values.

We explain the mortality prediction model in terms of its probability predictions. Specifically, we rescales

the SHAP values (in the log-odds space) to be in the probability space directly. The rescaled SHAP values

now sum to the probability output of the model.

13
https://scikit-survival.readthedocs.io/en/latest/api/generated/sksurv.linear model.CoxPHSurvivalAnalysis.html

14
https://scikit-survival.readthedocs.io/en/latest/api/generated/sksurv.ensemble.GradientBoostingSurvivalAnalysis.html
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Method 1 6.2 Recursive feature elimination

Recursive feature elimination works by searching for a subset of features by starting with all features in the

training dataset and successfully removing features until the desired number of feature remain. Firstly, we

train a model on the full dataset with all features. Then we rank features by importance (mean absolute

SHAP values) and remove the least important features. Another model is trained on the resulting feature

set, and the process iterates until only the desired number of features are left. Starting from 151 features,

we remove 6 features at the first iteration Then, We remove 5 features in each iteration until only one

feature left. We bootstrap the test set and assess the predictive performance. Specifically, we resample with

replacement from the test set 1,000 times and report the average and the 95% confidence interval of the

AUCs. The selected features in each iteration are listed in Supplementary appendix 2.

Method 1 6.3 Intermountain mortality risk scores and exhaustive feature se-

lection

Intermountain mortality risk scores [18] are built using complete blood count and basic metabolic profile.

Specifically, 13 laboratory features are used to predict 30 days, 1-year and 5-year mortality. Logistic regres-

sion was used to model the risk prediction equations with adjustment for age and sex. Dummy variables

modeled each category, with the referent defined as the lowest risk group (except for age categories: 18-29,

30-39, 40-49 [referent], 50-59, 60-69, 70-79, and �80 years). A scalar score value was derived for each variable

category by multiplying its �-coe�cient by 3 and rounding to the nearest integer (referent value = zero).

Each individual’s risk score became the sum of the score values based on his or her individual data.

We implement exhaustive search to select features of Intermountain risk scores. The number of features

ranges from 1 to 14 (including age). Given the number of features, we search all possible feature combinations.

The risk score becomes the sum of the score values of the selected features. The 5-year mortality risk scores

are evaluated on the training set. We select the feature combination that achieve the highest AUC on the

training set. Then, the risk scores of the selected feature combinations are evaluated on the testing set with

bootstrapping for 1,000 times.

Data availability

The data for all experiments and figures in the paper are publicly available. A downloadable version of the

dataset is available at https://github.com/qiuweipku/IMPACT.

Code availability

The code for our study is available at https://github.com/qiuweipku/IMPACT. The code for our interactive

website is available at https://github.com/qiuweipku/impact-website.
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