Abstract
In recent years, there has been growing interest in the problem of model selection in the Bayesian framework. Current approaches include methods based on computing model probabilities such as Stochastic Search Variable Selection (SSVS) and Bayesian LASSO and methods based on model choice criteria, such as the Deviance Information Criterion (DIC). Methods in the first group compute the posterior probabilities of models or model parameters often using a Markov Chain Monte Carlo (MCMC) technique, and select a subset of the variables based on a prespecified threshold on the posterior probability. However, these methods rely heavily on the prior choices of parameters and the results can be highly sensitive when priors are changed. DIC is a Bayesian generalization of the Akaike’s Information Criterion (AIC) that penalizes for large number of parameters, it has the advantage that can be used for selection of mixed effect models but tends to prefer overparameterized models. We propose a novel variable selection algorithm that utilizes the parameters credible intervals to select the variables to be kept in the model. We show in a simulation study and a real-world example that this algorithm on average performs better than DIC and produces more parsimonious models.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the NIH: R01AG061844 to PS, K01 AG057798 to SA; TP; U19AG063893 to PS, TP.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The IRB from Washington University St Luis approved the protocol
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.