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Abstract In recent years, there has been growing interest
in the problem of model selection in the Bayesian frame-
work. Current approaches include methods based on com-
puting model probabilities such as Stochastic Search Vari-
able Selection (SSVS) and Bayesian LASSO and methods
based on model choice criteria, such as the Deviance Infor-
mation Criterion (DIC). Methods in the first group compute
the posterior probabilities of models or model parameters
often using a Markov Chain Monte Carlo (MCMC) tech-
nique, and select a subset of the variables based on a pre-
specified threshold on the posterior probability. However,
these methods rely heavily on the prior choices of param-
eters and the results can be highly sensitive when priors are
changed. DIC is a Bayesian generalization of the Akaike’s
Information Criterion (AIC) that penalizes for large num-
ber of parameters, it has the advantage that can be used for
selection of mixed effect models but tends to prefer over-
parameterized models. We propose a novel variable selec-
tion algorithm that utilizes the parameters credible intervals
to select the variables to be kept in the model. We show in a
simulation study and a real-world example that this algo-
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rithm on average performs better than DIC and produces
more parsimonious models.
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1 Introduction

An important problem in statistics is choosing the model
that best describes the data from a set of a priori plausi-
ble models. This problem is often reduced to variable se-
lection from a set of explanatory variables assuming a gen-
eral linear regression model, and Kadane and Lazar (2004)
describe many criteria and search procedures that are appli-
cable to modeling data from cross-sectional studies. In the
context of analyzing longitudinal data, many variable selec-
tion methods have been proposed and extensively used for
linear mixed effects models, including adaptation of the in-
formation criteria such as AIC (Akaike’s Information Crite-
rion) and BIC (Bayesian Information Criterion), and shrink-
age based methods such as LASSO (Least Absolute Shrink-
age and Selection Operator). A review of some of these meth-
ods is provided by Muller et al. (2013).

In recent years, there also has been substantial inter-
est in the variable selection problem within the Bayesian
framework. There are two major approaches in the current
Bayesian variable selection methods: methods based on com-
puting model probabilities and methods based on computing
model choice criteria. Many methods based on computing
model probabilities are extensions of the “spike and slab”
method first introduced by Mitchell and Beauchamp (1988).
The general idea of this approach is to assign a prior distri-
bution that mixes a point mass distribution at the null model
and a diffuse uniform distribution elsewhere for each candi-
date variable. For each model, the posterior probabilities for
both the vector of inclusion and coefficients are calculated
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through Markov Chain Monte Carlo (MCMC) techniques.
The final subset of predictors are then selected based on
a pre-specified threshold on the posterior probability. The
Stochastic Search Variable Selection (SSVS) method pro-
posed by George and McCulloch (1993) entails a specifi-
cation of Bayesian mixture priors and uses the Gibbs sam-
pling to identify the models with high posterior probability.
A method suggested by Kuo and Mallick (1998) assigns an
indicator posterior probability with value 1 if the posterior
probability is sampled from the selected subset of predic-
tors and value 0 when sampled from the full conditional
distribution. The Gibbs Variable Selection (GVS) method
suggested by Dellaportas et al. (2002) samples the parame-
ter estimates from a mixture “pseudo-prior” that is concen-
trated around the posterior density of regression coefficients.
Adaptive shrinkage methods such as Bayesian LASSO pro-
posed by Park and Casella (2008) specify a prior directly
over the regression coefficients to induce sparseness of the
model. Rather than placing prior probabilities directly on
the regression coefficients of the individual covariates, one
could view the model as a whole and place prior directly
on the number of covariates and their coefficients. Meth-
ods using this approach include reversible jump MCMC first
proposed by Green (1995), and composite model (CMS)
method introduced by Godsill (2001). Some of these ap-
proaches could achieve a relatively fast computation speed
and good separation of variables as shown by O’Hara and
Sillanpaa (2009). However, these methods rely on comput-
ing model posterior probabilities and are highly sensitive to
the choice of priors so that the results may vary substantially
with different prior distributions. The reviews by O’Hara
and Sillanpaa (2009), Dellaportas et al. (2002), and George
and McCulloch (1997) provide additional details and dis-
cussion.

There are limited options for Bayesian model selection
criteria. A well-known criterion is the Deviance Information
Criterion (DIC) that was proposed by Spiegelhalter et al.
(2002). Similar to AIC, DIC penalizes for larger number of
effective parameters in the model and models with smaller
DIC are preferred. The criterion is implemented in Open-
BUGS (BUGS, Bayesian inference Using Gibbs Sampling)
and in JAGS (Just Another Gibbs Sampler). The latter im-
plementation requires to run at least two parallel chains
in the model. Recently Gelman et al. (2019), introduced a
Bayesian version of R2, but this criterion needs to be evalu-
ated.

Here we propose a variable selection algorithm that uti-
lizes the parameters credible intervals to identify the vari-
ables to be retained in a model. The algorithm does not need
“ad hoc” prior distributions of the regression parameters. It
is computationally efficient and produces reasonable results.
Vague conjugate priors can be assigned to the model coeffi-
cients without any need for tuning.

We will describe the algorithm in the next section. In
Section 3 we describe the results of comprehensive simu-
lations that show this algorithm on average produces more
parsimonious models compared to DIC. In Section 4 we use
the algorithm to test the hypothesis that genotypes of the
APOE gene correlate with changes of cognitive function in
a cohort of centenarians Sebastiani and Perls (2012). Con-
clusions and suggestions for future work are in Section 5.

2 Method

Consider a Bayesian model with outcome yi for observation
i (i = 1, · · · ,N), a set of h+ p possible predictors consist-
ing of h variables Z = (z1, · · · ,zh) to be kept in every model,
and p candidate variables X = (x1, · · · ,xp), where only an
unknown subset of the p candidate variables may be rele-
vant. The Z and X variables could either be main effects or
interaction terms. We denote the set of possible parameter
choices as γm = (γ1, · · · ,γp)

T , where γ j takes on values:

γ j =

{
1, if X j is in model m

0, otherwise

The regression model can then be expressed as

yi = ξ0i +
h

∑
k=1

θi,kzi,k +
p

∑
j=1

γ jβ jxi, j + ei

where ei ∼ N(0,σ2) is the normally distributed error term
with mean 0 and variance σ2 with Gamma prior. The term
ξ0i ∼ N(ξ0,σ

2
ξ
) denotes a “random intercept” that we as-

sume follows a normal distribution with mean ξ0 and vari-
ance σ2

ξ
, where ξ0 is the “fixed effect intercept” with mean

0 and variance σ2
ξ 0. The parameter θi,k ∼ N(θk,σ

2
θ
) denotes

the “random slope” for observation i, and θk denotes the
“fixed effect” slope that we also assume follows a normal
distribution with mean 0 and variance σ2

θ0. We assume the
coefficients β j are a priori independent and normally dis-
tributed with known mean and variance.

There are a total of |γ| =2p plausible models based on
the combinations of 0s and 1s in γm, and we want to se-
lect the model that best describes the data. Denote by Cα =

(Cα,1, · · · ,Cα,p) the set of posterior credible intervals for the
parameters β = (β1, · · · ,βp) of the p candidate variables,
where 1-α denotes the posterior coverage and each credible
interval Cα, j consists of a lower bound Cα, j,LB and an upper
bound Cα, j,UB, Cα, j = (Cα, j,LB,Cα, j,UB). The CI algorithm
proposed in this paper utilizes the credible intervals and its
lower and upper bounds to perform variable selection.

The main idea behind the CI algorithm is to use the
backward elimination method, first introduced by Marill and
Green (1963) in the early 1960s, and a Bayesian metrics. In
a traditional non-Bayesian multiple linear model, backward
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elimination begins with all candidate variables in the model
and removes the least significant (largest p-value) variable
one at a time, in an iterative way. In a Bayesian framework,
we can utilize the posterior credible interval to help quantify
the importance of each variable in the final model. We frame
the variable selection problem as a hypothesis testing prob-
lem, in which rejecting the null hypothesis H0 : β j = β0,null
leads to include the covariate X j in the model. When the
credible interval for the parameter β j includes the null value,
there are two alternative scenarios to consider. In the first
scenario, the lower and upper bounds of the posterior cred-
ible interval are both far away from the null value, in other
words, the null value falls well within the credible interval.
In this case, we can say with “some confidence” that this
variable is unlikely to be important. The second scenario is
when either the lower or the upper bounds is close to the
null value. In this case as more variables are dropped from
the model, this variable will be more likely to be retained
in the final model compared to the first scenario. In a non-
Bayesian model, the second scenario could be interpreted as
“borderline significant”. In each iteration step, we wish to
remove the variable that is most likely to have a regression
coefficient that satisfy the null hypothesis. Our observation,
which is the rationale for the CI algorithm, is that for any
credible interval that contains the null value, the minimum
of the absolute value of the difference of the two bounds
from the null value represents the importance of this variable
and the CI algorithm identifies the variable with the mini-
mum evidence against the null hypothesis to be removed at
each iteration.

To perform variable selection, we first standardize all
candidate variables to ensure that the regression coeffi-
cients are on the same scale. We start with the full model
Y = Zθ + Xβ , which includes all h fixed variables Z and
all p candidate variables X . In the first iteration, we ob-
tain the posterior credible intervals Cα, j( j = 1, · · · , p) for
the parameters β j( j = 1, · · · , p) of each of the p candi-
date variables. If the credible interval of x j does not in-
clude the null value (β j,null /∈ Cα, j), then x j can remain
in the model for the next iteration. Out of the β j’s with
β j,null ∈Cα, j, we remove from the model the variable x j with
max j∈p′ {min(|Cα, j,LB−β j,null |, |Cα, j,UB−β j,null |)}, where
p′ is the subset of parameters with β j,null ∈ Cα, j, and we
repeat this process until all remaining candidate variables
have β j,null /∈Cα, j. A three-parameter example of this itera-
tion process is illustrated in Figure 1.

In this example, there are three candidate variables for
variable selection, namely x1, x2, and x3, with corresponding
posterior estimates β1, β2, and β3 and 95% credible intervals
C0.95,1 = (1,5), C0.95,2 = (−3,2), and C0.95,3 = (−1,4). The
null value is 0 for all β ’s in this example. In the first iteration,
the initial step is to identify the β ’s with 95% CI that include
0 (0 ∈C0.95, j), this case β2 and β3, while β1 has a 95% CI

Fig. 1: A three-parameter example of an iteration process of
the CI algorithm.

that does not include 0 and it can remain in the model for the
next iteration. The second step is to identify which of x2 and
x3 to remove by finding the maximum of minimum of the
absolute value of the lower and upper bounds of the 95% CI
(max j∈p′ {min(|Cα, j,LB−0|, |Cα, j,UB−0|)}). In this exam-
ple, min(|C0.95,2,LB−0|, |C0.95,2,UB−0|) = min(|−3|, |2|) =
2 for β2, and min(|C0.95,3,LB−0|, |C0.95,3,UB−0|) = min(|−
1|, |4|) = 1 for β3. Since 2 is greater than 1, we decide to re-
move x2 in this iteration. We will refit the model with only x1
and x3 in the next iteration and repeat the previous steps un-
til all remaining candidate variables have posterior estimates
95% CI not including 0.

A method that has been extensively used and well im-
plemented in Bayesian model selection is the Deviance In-
formation Criterion (DIC) proposed by Spiegelhalter, et al.
in 2002 Spiegelhalter et al. (2002). DIC is calculated as:

DIC = D+ pD,where

D = Eθ |y[D(θ)],D(θ) =−2logP(y|θ),and

pD = Eθ |y[D(θ)]−D(Eθ |y[θ ])

DIC is composed of two parts: the posterior mean of
deviance (D) and the effective number of parameters (pD).
Similar to the AIC, DIC penalizes for larger number of ef-
fective parameters in the model. We will be comparing the
proposed credible interval algorithm and the DIC in the next
section.

3 Empirical Evaluation

3.1 Simulation setup

We conducted a simulation study to evaluate the sensitiv-
ity and specificity of the proposed CI algorithm and to
compare it with model selection based on DIC. Data used
for simulation were generated based on the Digits Span
Forward/Backward test from the Long Life Family Study
(LLFS), which is a multi-center, longitudinal, family-based
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study of healthy aging and longevity Newman et al. (2011).
The Digits Span test is a neuropsychological test that as-
sesses auditory attention and working memory with score
ranging from 0 to 14. The test was administered to approxi-
mately 4800 LLFS participants at enrollment, between 2006
and 2009. A second administration of the test occurred ap-
proximately 8 years after, in about 2500 participants, for a
total N=7,289. We built two regression models of the test
score, using predictors age at enrollment, follow-up time,
gender, years of education, and familial longevity indicator
(whether they were a member of a long-lived family or a
spouse control). One model included only main effects, and
the second model included the pairwise interactions between
age at enrollment, follow-up time, and familial longevity in-
dicator, sex, and education. We then used the two models to
simulate datasets and evaluate the accuracy of the algorithm
to identify the generating model. To perform variable selec-
tion using the CI algorithm, we used standardized covariates
and started from the full model and went through the itera-
tive steps to select the final model. The final selected model
was checked against the simulated model to obtain level of
concordance. The full model had the following form:

yi j = β0× (1− rep.indi)+β0i× rep.indi+

βage×age.bi +βdage×dagei j+

βsex× sexi +β f am.ind× f am.indi +βeduc× educi+

βsex×age× sexi×age.bi +βsex×dage× sexi×dagei j+

βeduc×age× educi×age.bi +βeduc×dage× educi×dagei j+

β f am.ind×age× f am.indi×age.bi+

β f am.ind×dage× f am.indi×dagei j + εi j

where yi j represents the test score of the ith individual at the
jth visit ( j=0 for baseline and j=1 for follow-up) that we
assumed normal distributed. To account for repeated mea-
surements using a random intercept per study participant, we
created an indicator variable rep.ind with value 1 if subject i
had more than one measurements, and 0 otherwise. Covari-
ates age.b and dage denoted age at baseline and follow-up
time in years. The variable sex was a binary variable with
value 1 for males and 0 for females, and variable educ was
an ordinal variable with values 0-17 that approximated years
of education. The variable f am.ind was an indicator vari-
able with value 1 if subject i was a member of a long-lived
family and 0 if subject i was a spouse control. The random
intercept term β0i was assigned a normal prior distribution
with mean β0 and precision parameter τ , which had Gamma
distribution with both shape and scale parameters equal to 1.
All other covariates were assigned normal prior distributions
with mean 0 and precision 0.1.

A “mismatch” occurred when the CI algorithm falsely
detected an interaction term in the analysis of the data gen-

erated from the main effects model (a false positive) or failed
to detect a real interaction in the analysis of the data gener-
ated from the full model (a false negative). We run the sim-
ulations with four different sample sizes: 500, 1000, 5000,
and the largest sample size we had, 7289, with 100 repli-
cations for each sample size. As a comparison to the CI al-
gorithm, we also performed model selections using DIC. In
each simulation setting (main effect model and full model)
and with each sample size, we ran two parallel chains of
the MCMC in the R package JAGS, and computed the DIC
for each of the 2p=64 models and selected the final model
with the smallest DIC. All Bayesian models in the CI algo-
rithm were ran with 2,000 adaptions and 5,000 iterations,
and all Bayesian models used in the DIC method were ran
with 2,000 adaptions and 1,000 iterations to reduce the com-
puting time.

3.2 Simulation results

The results of the simulation are shown in Table 1 and Fig-
ure 2. When the data were generated from the full model,
with sample sizes 1,000, 5,000, and 7,289, both the CI al-
gorithm and DIC detected the correct model with 100% ac-
curacy. With the smallest sample size 500, the CI algorithm
detected the correct model with 74% accuracy and 26% 1-
mismatch rate (only five out of the six interaction terms were
detected), and DIC detected the correct model with 87% ac-
curacy and 13% 1 mismatch rate. This is the only scenario
where the DIC performed better than the CI algorithm in
the full model setting. When the data were generated from
the model with main effects only, the CI algorithm detected
the correct model with 100% accuracy with sample sizes
500, 1,000, and 7,289, and with 99% accuracy and 1% 2-
mismatch rate (falsely detect two interaction terms) with
sample size 5,000. However, DIC only detected the correct
model with 37%, 25%, 9% and 3% accuracy in the sample
sizes 500, 1,000, 5,000, and 7,289, respectively. As shown
in Table 1 and Figure 2, DIC tended to falsely select interac-
tion terms which are more concentrated with one, two, and
three mismatches. The simulation results suggest that the CI
algorithm favors more parsimonious models than DIC. This
property may lead to miss important effects with small sam-
ple sizes. DIC appears to favor models with more redundant
parameters and may be a better choice for predictive mod-
eling. However, performing a full search using DIC is only
computationally feasible with a relatively small number of
parameters. In a model with p candidate variables, calculat-
ing the DIC for 2p models could be extremely computation-
ally intensive as p gets large. Although one can also perform
variable selection using a backward approach with DIC, it
is still very computationally demanding because it requires
running multiple chains for each model.
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All analyses were run in R3.5.1 using the rjags package
version 4-6.

4 Application: Testing the Effect of APOE Alleles in
Cognitive Decline of Centenarians

4.1 Background

There is growing evidence that the rate of change of cog-
nitive function is genetically regulated by the gene APOE:
a well-established risk factor for Alzheimer’s disease. One
variant of this gene is associated with extreme human
longevity and possibly with slower decline of cognitive
function, as shown by Sebastiani et al. (2019); Kim et al.
(2017). We tested this hypothesis using data from the New
England Centenarian Study (NECS): a longitudinal study of
centenarians born between 1880 and 1910 and their family
members that is described by Sebastiani and Perls (2012).
Study participants have been enrolled since 1995 and are
followed-up annually, until death, to assess their health sta-
tus and their physical and cognitive functions. The lat-
ter is assessed by administering the Information-Memory-
Concentration (IMC) portion of the Blessed Dementia Scale
(see work by Blessed et al. (1968)). The total memory score
of the IMC ranges from 0 to 37, where 33 or higher indicat-
ing normal cognition; 27 to 32 indicating mild cognitive im-
pairment; 21 to 26 indicating moderate impairment; and 21
or lower indicating severe cognitive impairment (Terry et al.
(2008)). Genotype data of the APOE gene have been gen-
erated as described in Sebastiani et al. (2019) using a com-
bination of genome-wide genotype data that were generated
with Illumina arrays, and imputation. We generated APOE
alleles e2, e3 and e3 from combinations of the genotypes
of the single nucleotide polymorphisms (SNPs) rs7412 and
rs429358 as described in Sebastiani et al. (2019). We then
analyzed the total memory score as a function of the APOE
variants to test the hypothesis that different genotypes of this
gene correlate with different rate of cognitive decline at ex-
treme old age.

4.2 Analysis

We stratified the 485 NECS participants with APOE geno-
type information and at least one IMC score (excluding par-
ticipants with e2e4 genotype) into three groups: the “APOE2
group” (N=117), which comprised carriers of the genotypes
e2e2 or e2e3; the “APOE3 group” (N=330), which com-
prised carriers of e3e3; and the “APOE4 group” (N=38),
which comprised carriers of e3e4 (genotype e4e4 was not
available in this study sample). The “APOE3 group” was
used in the analysis as the reference group because it is

the most common genotypes in whites. A summary of de-
mographic information is shown in Table 2. Age at enroll-
ment ranged from 91 to 113 years with mean of 103.3 years
(SD: 4.5). There were no significant differences in age at
enrollment, average follow-up time, gender, education and
score at first assessment comparing the APOE2 group and
the APOE4 group to the APOE3 group.

To test the association between the APOE genotype and
the rate of memory decline, we compared the effects of
APOE2 and APOE4 to APOE3 separately. In the APOE2
analysis, we subset our sample to participants in the APOE2
group and the APOE3 group, and a new APOE variable was
created to take on value 1 if participant carried at least one
cope of the e2 allele, and value 0 if participant had genotype
e3e3. Similarly, the APOE4 analysis included only partici-
pants from the APOE4 group and the APOE3 group, and a
new APOE variable was created to take on value 1 if partic-
ipant carried at least one e4 allele, and value 0 if participant
had genotype e3e3. We used a Bayesian hierarchical model
with random intercept to model the association between the
outcome composite memory score and the APOE groups,
adjusting for other factors. The full model for both APOE2
and APOE4 analyses had the following form:

yi j = β0× (1− rep.indi)+β0i× rep.indi+

βage×age.bi +βdage×dagei j+

βsex× sexi +βAPOE ×APOEi +βeduc× educi+

βsex×age× sexi×age.bi +βsex×dage× sexi×dagei j+

βeduc×age× educi×age.bi +βeduc×dage× educi×dagei j+

βAPOE×age×APOEi×age.bi+

βAPOE×dage×APOEi×dagei j + εi j

where yi j represented the Blessed composite memory score
for the ith individual and the jth visit ( j=1 for baseline visit
and j=2 for follow-up visit). To account for repeated mea-
surements, the intercept of this model β0× (1− rep.indi)+

β0i× rep.indi had both a fixed effect β0 with normal prior
distribution of mean 0 and precision 0.1, and a random ef-
fect β0i with normal prior distribution of mean β0 and preci-
sion parameter τ , which had prior distribution Gamma with
both shape and scale parameters equal to 1. The indicator
rep.indi was defined as described earlier to indicate whether
individual i had more than one measurement (rep.indi=1 if
the ith individual had more than one measurement, and 0
otherwise). The error term εi j was assumed to have Normal
distribution with 0 mean and variance that was a priori fol-
lowed an inverse Gamma distribution (both shape and scale
parameters equal to 1). The covariates age.b and dage rep-
resented age at baseline and follow-up time in years. The
sex variable was coded to have value 1 for male and 0 for
female, and educ was an ordinal variable taking on values
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0-17 that approximates years of education. The APOE vari-
able was created, as described above, to take on value 1 to
indicate individual i had at least one copy of e2 or e4 al-
lele, and 0 if their APOE genotype was e3e3. There were
six interaction terms in the full model, including interaction
terms between sex, education, APOE, and age at baseline
and follow-up time in years. The two interactions βAPOE×age
and βAPOE×dage represented the effect of APOE on the cross-
sectional and longitudinal effect of age.

To perform the model selection and obtain final model
estimates, we first standardized all variables in the model.
During the model selection process, all main effect terms
were always kept in the model, and interaction terms were
considered as the candidate variables for selection. We
started with the full model in the first iteration and removed
the interaction term with minimum evidence against the null
hypothesis (β = 0) identified by the CI algorithm. This pro-
cess was repeated until all interaction terms remaining in the
model had credible intervals not including the null value, or
until all interaction terms were removed from the model. To
provide the final model parameter estimates, the posterior
estimates of main effects were scaled back by divide by the
standard deviation of corresponding variable, and the poste-
rior estimate of interaction terms were scaled back by divide
by the product of standard deviations of the corresponding
variables.

All analyses were conducted in R 3.5.1 using the rjags
package version 4-6.

4.3 Results

Parameter estimates of the final models are shown in Ta-
ble 3. In neither analysis, the CI algorithm detected interac-
tions between the APOE alleles and either age at enrollment
or followup time. In the APOE2 analysis (comparing the
APOE2 group to the APOE3 group), both age at enrollment
and follow-up time were negatively associated with Blessed
total memory score (age effect = -0.8, 95%CI: -0.94, 0.66;
follow-up time effect = -1.11, 95%CI: -1.36, -0.87). This
suggests that for every one year increase in age at enroll-
ment and follow-up time, the Blessed total memory score
was expected to decrease by 0.8 points and 1.11 points, re-
spectively. Years of education and having at least one copy
of the e2 allele did not appear to have an effect on the total
memory score. Particularly, carriers of 1 or more copies of
the e2 allele had an estimated increase of the Blessed mem-
ory score of 0.37, although the posterior probability that this
effect is > 0 was only 0.12. Similarly, in the APOE4 analy-
sis (comparing the APOE4 group to the APOE3 group), age
at enrollment and follow-up time were negatively associated
with the total memory score (age effect = -0.82, 95%CI: -
0.97, -0.67; follow-up time effect = -1.15, 95%CI: -1.42, -
0.88). Years of education and having at least one copy of the

e4 allele did not appear to have a strong effect on the total
memory score: carriers of 1 or more copies of the e4 al-
lele had an estimated decrease of the Blessed memory score
of 1.78, although the posterior probability that this effect is
< 0 was only 0.05. These results suggest that there is no
strong association between APOE genotype and the Blessed
total memory score in very old people, and that there is no
strong difference in rate of change of Blessed total mem-
ory score among APOE genotype groups. We have also per-
formed variable selection using DIC as a comparison to the
CI algorithm. In the APOE2 and APOE4 analyses, DIC has
selected models with four interaction terms and two interac-
tion terms respectively, and all interaction terms had param-
eter estimates 95% credible intervals including 0.

5 Conclusion

In this article, we proposed the CI algorithm: a novel ap-
proach to perform Bayesian variable selection utilizing the
posterior credible intervals. Inspired by the backward elimi-
nation variable selection method in linear regression models,
this algorithm removes candidate variables one at a time by
quantifying and comparing the strength of the association of
possible predictors with the outcome. We conducted a com-
prehensive simulation to assess the sensitivity and speci-
ficity of the algorithm and the simulation suggests that the
algorithm is accurate with relatively large samples, and com-
pared to DIC tends to produce more parsimonious models
with smaller false positive rate.

There are a few advantages of our proposed CI algo-
rithm comparing to some variable selection methods based
on computing model probabilities and methods based on
computing model choice criteria such as DIC. First, the CI
algorithm does not require to specific prior distributions on
the model coefficients and the inclusion probabilities of each
predictor, or a posterior threshold to decide whether or not
to include a predictor. Secondly, our method yields inter-
pretable results. The final selected model all have 95% cred-
ible intervals not containing the null value. When imple-
mented with real world data, these results could help de-
rive practical meaningful interpretations. Thirdly, although
in this paper we illustrated our proposed algorithm using
a mixed effects model with random intercepts, it can be
extended and applied to a more generalized form of lin-
ear models. For variables with random effects, we can still
perform variable selection on the fixed part of the ran-
dom effects. And lastly, the CI algorithm is computation-
ally efficient and the largest number iterations (number of
Bayesian models to run) is equal to the number of candi-
date variables. Out of the methods discussed above, DIC
is the most computationally intensive since it requires to
run at least two parallel MCMC chains of all possible 2p

models. “Spike and slab” based methods require to run
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long MCMC chains to search over model space, which also
could be computationally demanding. However, computa-
tion load of our algorithm could still get immense in the case
of high-dimensional data where p� n. Bondell and Reich
(2012) proposed a Bayesian variable selection approach uti-
lizing joint credible regions that can be suited for the high-
dimensional case, though this approach yields higher false
positive rate in the low-dimensional setting compared to our
proposed algorithm based on their simulation study.

Overall, our proposed method performs well with rea-
sonable number of parameters. It yields results with parsi-
monious parameters with practical meaning and can achieve
computational efficiency. In addition to the application ex-
ample in this paper, we have also implemented this pro-
posed algorithm in analyzing the association between fa-
milial longevity and cognitive decline, and the association
between APOE allele and cognitive decline in the Long
Life Family Study (LLFS) Andersen et al. (2020); Du et al.
(2020).
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Table 1: Simulation results comparing the CI algorithm and DIC.

Sample Size 7289 5000 1000 500
Simulated Model Full Main Full Main Full Main Full Main
Method CI DIC CI DIC CI DIC CI DIC CI DIC CI DIC CI DIC CI DIC
Correct Model 100 100 100 3 100 100 99 9 100 100 100 25 74 87 100 37
1 Mismatch 0 0 0 30 0 0 0 32 0 0 0 36 26 13 0 43
2 Mismatch 0 0 0 37 0 0 1 34 0 0 0 27 0 0 0 18
3 Mismatch 0 0 0 25 0 0 0 20 0 0 0 12 0 0 0 2
4 Mismatch 0 0 0 5 0 0 0 4 0 0 0 0 0 0 0 0
5 Mismatch 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
6 Mismatch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 2: Demographic characteristics and test score of 485 NECS study participants.

APOE2(e2e2, e2e3) APOE3(e3e3) APOE4(e3e4) p-value (t-test,
comparing

APOE2 and
APOE3)

p-value (t-test,
comparing

APOE4 and
APOE3)

N(%) 117(24.1%) 330(68%) 38(7.8%)
Age at Enrollment, mean(SD), years 103.5(4.6) 103.3(4.4) 102.4(5) 0.66 0.29
Follow-up, mean(SD), years 1.8(2) 1.7(2.1) 1.9(2.3) 0.89 0.67
Gender, male(%) 22(18.8%) 85(25.8%) 9(23.7%) 0.11 0.78
Education, years 19.2(13.3) 18.1(12.8) 17.6(13.3) 0.48 0.81
Total Memory Score at first assessment (SD) 25.1(8.3) 25(8.6) 24.4(10.2) 0.9 0.72
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Table 3: Parameter estimates of the New England Centenarian Study data.

APOE2 APOE4
age -0.8(-0.94,-0.66) -0.82(-0.97,-0.67)
dage -1.11(-1.36,-0.87) -1.15(-1.42,-0.88)
sex, male 2.48(1.02,3.89) 2.21(0.65,3.76)
educ -0.01(-0.06,0.03) -0.04(-0.09,0.01)
APOE 0.37(-0.94,1.66) -1.78(-3.92,0.37)
educ*age - -
educ*dage - -
sex*age - -
sex*dage - -
APOE*age - -
APOE*dage - -
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