Abstract
The spreading dynamics of infectious diseases is determined by the interplay between geography and population mixing. There is homogeneous mixing at the local level and human mobility between distant populations. Here I model spatial location as a type and the population mixing by intra- and inter-type mixing patterns. Using the theory of multi-type branching process, I calculate the expected number of new infections as a function of time. In 1-dimension the analysis is reduced to the eigenvalue problem of a tridiagonal Teoplitz matrix. In d-dimensions I take advantage of the graph cartesian product to construct the eigenvalues and eigenvectors from the eigenvalue problem in 1-dimension. Using numerical simulations I uncover a transition from linear to multi-type mixing exponential growth with increasing the population size. Given that most countries are characterized by a network of cities with more than 100,000 habitants, I conclude that the multi-type mixing approximation should be the prevailing scenario.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
NA
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
NA
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.