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The spreading dynamics of infectious diseases is determined by the interplay between geography
and population mixing. There is homogeneous mixing at the local level and human mobility between
distant populations. Here I model spatial location as a type and the population mixing by intra-
and inter-type mixing patterns. Using the theory of multi-type branching process, I calculate the
expected number of new infections as a function of time. In 1-dimension the analysis is reduced to
the eigenvalue problem of a tridiagonal Teoplitz matrix. In d-dimensions I take advantage of the
graph cartesian product to construct the eigenvalues and eigenvectors from the eigenvalue problem
in 1-dimension. Using numerical simulations I uncover a transition from linear to multi-type mixing
exponential growth with increasing the population size. Given that most countries are characterized
by a network of cities with more than 100,000 habitants, I conclude that the multi-type mixing
approximation should be the prevailing scenario.

I. INTRODUCTION

Homogeneous mixing is a cornerstone in the mathe-
matical analysis of infectious disease outbreaks [1, 2]. In
a fully mixed population we define the basic reproductive
number R0 = β/γ, where β is the average rate of disease
transmission from infected to susceptible individuals and
γ is the recovery rate from the disease. When R0 < 1 the
epidemic outbreak dies out, but it grows exponentially in
time when R0 > 1.

Human populations are not fully mixed, calling into
question the value of R0. There are different mixing pat-
terns according to age, immunization status and the ad-
herence to government recommendations. Nevertheless,
these heterogeneous mixing patterns can be treated un-
der a generalized mixing approximation. If we stratified
individuals into multiple types, then we can model the in-
fectious disease spread as a multi-type spreading process
[3–5]. In multi-type spreading processes R0 is replaced
by the largest eigenvalue ρ of the mixing matrix. When
ρ < 1 the infectious disease outbreak dies out, but it
grows exponentially in time when ρ > 1.

Geographical heterogeneity seems to challenge the
mixing hypothesis [6–8]. When simulated agents are con-
strained to a ring with nearest neighbours transmissions,
the total number of infected cases grows linearly in time
[6]. Sub-exponential infectious dynamics has been re-
ported for agent based simulations in urban settings as
well [7]. There are two caveats though. First, the obser-
vation of non-exponential dynamics is not sufficient ev-
idence to rule out the mixing hypothesis. I have shown
that a combination of a high reproductive number with
a truncation of the disease transmission chain yields a
power law growth in the number of new infections [9].
The pre-lockdown phase of the COVID-19 outbreak is
consistent with this power low growth in the number of
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FIG. 1. Geographical maps highlighting cities with more than
100,000 habitants and the road network connecting them. a)
Cuba. b) Germany.

new infections [10–12]. Second, there is no prove that
geography cannot be harnessed under some mixing ap-
proximation.

Here I demonstrate that geographical heterogeneity
can be modelled as a type. Focusing on large cities, coun-
tries like Cuba look like a string of cities, with an effective
1-dimensional topology (Fig. 1a). Other countries, like
Germany, are better represented by a two-dimensional
mesh, with an effective 2-dimensional topology (Fig. 1b).
At this level of description, we can model the network of
cities as a multi-type network, where each city is repre-
sented by a type and the mixing pattern between cities
accounts for the human mobility between them. In the
following I introduce the multi-type mixing approxima-
tion for type networks with a d-dimensional topology,
derive analytical results and test them with numerical
simulations.

II. MULTI-TYPE SIR MODEL

I investigate the susceptible, infected and removed
(SIR) model on the multi-type network of cities. In
the SIR model each individual is in one of three states:
susceptible, infected and removed. Infected individuals
transmit the disease to susceptible individuals, the lat-
ter becoming infected. Infected individuals recover or die
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from the disease, at which point they are removed from
the disease transmission chain, the removed state.

A. One-type branching process

When all individuals are of one-type we have a fully
mixed population. We need to make a distinction though,
between patient zero and any other case. In more detail,
each individual contact other individuals at some rate ζ.
Each contact results in disease transmission with prob-
ability p, resulting in the effective disease transmission
rate β = ζp. Finally, the infected individuals are re-
moved, due to recovery, isolation or death, at a rate γ.
Patient zero is selected at random and its typical disease
transmission rate is 〈β〉, where 〈· · · 〉 denotes the average
over the variability of β across individuals. Therefore
patient zero has the average reproductive number

R0 =
〈β〉
γ

(1)

R0 is called the basic reproductive number.
For infected cases other than patient zero we take into

account the disease transmission bias towards individuals
with a higher contact rate. Any case other than patient
zero is found with a probability proportional to its con-
tact rate: β/N〈β〉, where N is the population size. Once
infected, the individual found by contact will engage in
new contacts at a rate β. Therefore, the average repro-
ductive number for patients other than patient zero is

R =
〈β2〉
〈β〉γ

(2)

R0 gives the average number of infectious at the first
generation, those generated by patient zero. R0R gives
the average number of infections at the second generation
and R0R

k−1 gives the average number of infections at
the k generation. The actual time when an infected case
at generation k becomes infected equals the sum of d
generation times

td =
d∑
k=1

∆tk (3)

where ∆tk are the generation intervals, the time inter-
val from the infection of a primary case to infection of
a secondary case in the transmission chain from patient
zero. If the generation intervals have the probability den-
sity function g(t), then td has the probability density
function g?k(t), where the symbol ? denotes convolution

(g?k =
∫ t

0
g?(k−1)(τ)g(t − τ)dτ). Putting the number of

descendants and the timing together, we obtain the av-
erage number of new infected individuals at time t

İ(t) = I0R0

∞∑
k=1

Rk−1g?k(t) (4)

where I0 is the of number of patient zeros.
For the standard SIR model the distribution of gen-

erating intervals is the distribution of recovery times.
Given that recovery takes place at a constant rate, the
distribution of generation intervals is exponential

g(τ) = γe−γτ (5)

In this case, equation (4) becomes

İ = I0R0

∞∑
k=1

(Rγt)k−1

(k − 1)!
e−γt (6)

Noting that the series in (6) is the Taylor series expansion
of the exponential, we obtain

İ = I0R0e
(R−1)γt (7)

When R < 1 the disease dies out, but it grows expo-
nentially when R > 1. R replaces the basic reproduc-
tive number R0 in the context of contact heterogeneity
(〈β2〉 > 〈β〉2).

B. Multi-type branching process

The multi-type formalism replaces the average repro-
ductive number, a scalar, by a matrix of reproductive
numbers. Let n be the number of types, representing
cities or subpopulations. To patient zero we assign the
reproductive number matrix R0n,n. The matrix element
R0a,b represents the average number of cases of type b
generated by a patient zero of type a. To any other case
we assign the reproductive number matrix Rn,n. The
matrix element Ra,b represents the average number of
cases of type b generated by a case of type a that is not
a patient zero. I have previously calculated the expected
number of infected individuals of epidemic outbreaks in
heterogeneous populations with a multi-type structure
[4]. Although the calculation is more involved it yields
an expression with the same structure as the one-type
case

İ = γIT0 R0

∞∑
k=1

(Rγt)k−1

(k − 1)!
e−γtJn,1 (8)

where I0 is a column vector representing the number of
patient zeros by type and Jn,1 is a column vector of ones.
Or, making use of the exponential of a matrix,

İ = γIT0 R0e
(R−I)γtJn,1 (9)

where I is the identity matrix.

C. Diagonalizable R

When R is diagonalizable we obtain results that re-
semble the exponential dynamics of the single-type case.
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Let P be the transformation matrix diagonalizing R,

R = PDP−1 = P

λ1 0
. . .

0 λn

P−1 (10)

where λ1, . . . , λn are the eigenvalues of R. Note that
some λn may be equal if some eigenvalues have multi-
plicity larger than 1.

I assume that R0 has the same form of R

R0 = rR (11)

where the factor

r =
〈β〉2

〈β2〉
(12)

is the ratio between equations (1) and (2).
Finally, I will use the standard notation for functions

of diagonal matrices

f(D) =

f(λ1) 0
. . .

0 f(λn)

 (13)

Using (10) and (11) we can rewrite (9) as

İ = γrIT0 PDe
(D−I)γtP−1Jn,1 (14)

Whether the number of new cases grows or decays is de-
termined by the largest eigenvalue

ρ = max
n

λn (15)

When ρ < 1 the disease dies out, but it grows expo-
nentially when ρ > 1. ρ replaces the basic reproductive
number in the context of multi-type mixing.

The predictive value of ρ can be extended beyond di-
agonalizable R. In most realistic scenarios there is a bi-
directional path between every pair of cities in the net-
work. In the language of graph theory, the network of
cities is strongly connected. In such a case R is irre-
ducible in addition to be non-negative. Using the Perron-
Frobenious theorem for irreducible matrices [13], one can
demonstrate that when ρ < 1 the disease dies out, but it
grows exponentially when ρ > 1 [3, 4].

The diagonalization procedure is extended to any gen-
eration interval distribution. Re-starting from equation
(4), without specifying the form of g(t), we obtain

İ = rIT0 PDf(D, t)P−1Jn,1 (16)

where

f(x, t) =
∞∑
k=1

xk−1g?k(t) (17)

For the SIR model we have g(t) = γe−γt, f(x, t) =
γe(x−1)γt and we recover equation (14). I have calculated
f(x, t) in terms of analytical functions for the gamma dis-
tributions of generation intervals [14]. Here I restrict the
analysis to the SIR model. The extensions to other gen-
eration interval distributions is obtained after plugging
in the specific function f(x, t).

0 10 20 30

γt

10
0

I.

All eigenvalues

Largest eigenvalue

FIG. 2. Multi-type dynamics in 1-dimension for the param-
eter set r = 1, a = 1.1/2, b = 1.1/4, and n = 6. The lines
were generated with equation (24) using the contribution of
all eigenvalues (dashed) or only the largest eigenvalue (solid).

III. 1-DIMENSION

Now I analyze 1-dimensional topologies. Countries like
Cuba have a 1-dimensional typology (Fig. 1a). In this
case the reproductive number is given by

R1 =


R11 R12 0
R21 R22 R23

. . .
. . . Rn−1n

0 Rnn−1 Rnn

 (18)

where Rii, Ri−1i and Rii+1 are the intra- and inter-city
reproductive numbers. To obtain analytical results, I will
work with homogeneous cities and left-right symmetric
exchanges: Rii = a and Ri−1i = Rii+1 = b. In this case
R is a symmetric tridiagonal Toeplitz matrix.

R1(a, b) =


a b 0

b
. . .

. . .

. . .
. . . b

0 b a

 (19)

The eigenvalue problem of a tridiagonal Toeplitz ma-
trix is solved exactly [15]. The eigenvalues are

λ1k = a+ 2b cos
πk

n+ 1
(20)

where k = 1, . . . , n. From the latter equation we obtain
the largest eigenvalue

ρ1 = a+ 2b cos
π

n+ 1
(21)

The intracity reproductive number a plus 2 times the in-
tercity reproductive number b. The cos π

n+1 is a bound-
ary correction. The type at the far left has no left neigh-
bour and the type at the far right has no right neighbour.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2021. ; https://doi.org/10.1101/2020.11.24.20238337doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.24.20238337
http://creativecommons.org/licenses/by-nc/4.0/


4

Since cos π
n+1 = 1 + O(n−2) the boundary correction is

irrelevant when n� 1. The value of ρ1 can be used to de-
termine whether the infectious disease dies out (ρ1 < 1)
or grows (ρ1 > 1).

To account for all eigenvalues I go back to (14). The di-
agonalization matrix for the tridiagonal Toeplitz matrix
(19) is given by [15]

P1ij =

√
2

n+ 1
sin

ijπ

n+ 1
(22)

Since R1(a, b) in (19) is symmetric then P−1 = PT . In
this case (14) is simplified to

İ = rIT0 P1De
(D−I)γtPT1 Jn,1 (23)

We can work directly with this equation. We can arrive to
a more explicit expression as well. Substituting the form
of P1 (22) and expanding the matrix sums we obtain

İ =
2r

n+ 1

n∑
i,j,k=1

I0i sin
ikπ

n+ 1
sin

jkπ

n+ 1
λke

(λk−1)γt (24)

Using the trigonometric identity (AD 361.1 in Ref. [16])

n∑
j=1

sin jx = sin
(n+ 1)x

2

sin nx
2

sin x
2

(25)

we can calculate the sum over the j index

n∑
j=1

sin
jkπ

n+ 1
= sin

kπ

2

sin nkπ
2(n+1)

sin kπ
2(n+1)

(26)

Substituting (26) into (24) and assuming a single patient
zero at position i0 (I0i = δi,i0) we obtain

İ =
2r

n+ 1

n∑
k=1

sin
kπ

2
sin

i0kπ

n+ 1

sin nkπ
2(n+1)

sin kπ
2(n+1)

λke
(λk−1)γt

(27)

Figure 2 displays the analytical solution for a specific
set of a and b values, together with the contribution of the
largest eigenvalue alone. For γt > 10 the largest eigen-
value is a very good approximation to the full analytical
solution. Of note, I have double checked numerically that
both (23) and (27) give the same result.

IV. 2-DIMENSIONS

In 2-dimensions I take advantage of the cartesian graph
product and the 1-dimensional solution to calculate the
eigenvalues. First, I introduce the definition of cartesian
product of weighted graphs.

A. Cartesian product of graphs

Cartesian product of graphs: Let G and F be a
weighted graph with loops, adjacency-weighted matrices
A and B and vertex count n and m, respectively. The
cartesian product of G and F , denoted by G�F , is the
graph with adjacency matrix

A⊕B = Im ⊗A+B ⊗ In (28)

where In is the identity matrix of size n2, ⊕ denotes the
Kronecker sum and ⊗ denotes the Kronecker product.
The Kronecker product is defined as [17]

A⊗B =

a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

 (29)

Example: An edge represents a complete simple graph
with two nodes, denoted by K2. K2 has the adjacency

matrix A =

[
0 1
1 0

]
. The cartesian product K2�K2 has

the adjacency matrix A⊕A = I2 ⊗A+A⊗ I2

=

[
1 0
0 1

]
⊗
[
0 1
1 0

]
+

[
0 1
1 0

]
⊗
[
1 0
0 01

]

=

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 (30)

The latter is the adjacency matrix of a graph with ver-
tices in a square. That is why the cartesian product is
denoted by the symbol �.
Eigenvalues: The eigenvalues of the Kronecker sum

equal the sum of the eigenvalues of the summed matrices
[17]. If αk and βl are the eigenvalues of A and B, with
associated eigenvectors u(k) and v(l) and transformation
matrices P and Q, then

λ2n(k−1)+l = αk + βl (31)

are the eigenvalues of A⊕B,

w(n(k−1)+l) = u(k) ⊗ v(l) (32)

the associated eigenvectors and

S = P ⊗Q (33)

the transformation matrix diagonalizing A⊕B.

B. 2-dimensional grid decomposition

We can decompose a 2-dimensional grid as the carte-
sian graph product between a 1-dimensional graph
G1(a, b) with loops and another 1-dimensional graph
G1(0, b) without loops (Fig. 3),

G2(a, b) = G1(a, b)�G1(0, b) (34)
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=

FIG. 3. The cartesian product � between a string with loops
and a string without loops yields a 2-dimensional grid with
loops.

The adjacency matrix of G2(a, b) is

R2(a, b) = R1(a, b)⊕R1(0, b) (35)

Substituting (20) into (31) we obtain the eigenvalues of
R2(a, b),

λn(k−1)+l = a+ 2b

(
cos

πk

n+ 1
+ cos

πl

n+ 1

)
(36)

where k = 1, . . . , n and l = 1, . . . , n. From the latter
equation we obtain the largest eigenvalue

ρ2 = a+ 4b cos
π

n+ 1
(37)

Noting that R1(a, b) and R2(0, b) are both diagonalized
by P1, we substitute P = Q = P1 in (33) to obtain the
transformation matrix in 2-dimensions

P2 = P1 ⊗ P1 = P⊗2
1 (38)

Substituting (38) into (14) and bearing in mind that
P−1

2 = PT2 we obtain

İ = rIT0 P
⊗2
1 De(D−I)γt(P⊗2

1 )TJn,1 (39)

This equation is the multi-type mixing approximation for
the average number of new infections in a 2-dimensional
topology.

V. d-DIMENSIONS

We can iterate the cartesian graph product to generate
d-dimensional grids

Gd(a, b) = G1(a, b)�[G1(0, b)]�(d−1) (40)

The average number of new infections in these d-
dimensional grids is given by

İ = rIT0 P
⊗d
1 De(D−I)γt(P⊗d1 )TJn,1 (41)

with eigenvalues

λnd−1(k1−1)+nd−2(k2−1)+···kd = a+ 2b
d∑
i=1

cos
πki
n+ 1

(42)

where ki = 1, . . . , n and i = 1, . . . , d, and largest eigen-
value

ρd = a+ 2db cos
π

n+ 1
(43)

Applications for the 3-dimensional case include the
spreading of prion protein aggregates in the human brain.

VI. NUMERICAL SIMULATIONS

The basic reproductive number and its multi-type ex-
tension are defined in a contex where the number of in-
fected individuals is much smaller than the population
size. In a finite population the number of infected indi-
viduals may reach a significant percent of the population
size. In that case the starting equation (4) is no longer
valid. To investigate the validity of the analytical results
and the population size effects, I will perform numerical
simulations of the SIR model in 2-dimensional grids.

The cities are assumed of equal population size H. The
number of susceptible individuals at city (i, j) is stored in
the variable Sij . A list L is created with elements storing
the coordinates of all infected individuals. The size of L
is the number of individuals in the infected state, I = |L|.
γ = 1 and time is measured in units of 1/γ.
Initial conditions: At t = 0 all individuals are in the

susceptible state except from one individual at city (1, 1).
L is initiated with the coordinates (1, 1) and Sij = H for
all (i, j) except for S1,1 = H − 1.
Dynamics: The Gillespie algorithm is used to update

the system. At a total rate µ = (a + 4b + γ)I a new
event happens. The time interval ∆t to this new even is
extracted from the exponential probability density func-
tion µeµ∆t. A coordinate is selected at random from L
and stored in (i, j). With probability γ/µ the selected
coordinate is removed from L. Otherwise, the disease
transmission rule is applied as specified below. The time
is updated t→ t+ ∆t.

Disease transmission: With probability a/(a+ 4b) we
set (i′, j′) = (i, j), otherwise we set (i′, j′) equal to one of
the 4 neighbours (i+1, j), (i, j+1), (i, j−1) and (i−1, j)
with equal probability. With probability Si′,j′/H a sus-
ceptible individual in (i′, j′) gets infected, the coordinates
(i′, j′) are added to L and the updates Si′,j′ → Si′,j′ − 1
and I → I + 1 are performed. The empty boundary
condition Si,−1 = Sn+1,j = Si,n+1 = S−1,j = 0 are used.

Statistics: The number of new infections is recorded
in time bins of size 1 and the average is calculated over
multiple realizations.

A. Subpopulation size effects

First I illustrate the transition to the multi-type
branching approximation with increasing the cities pop-
ulation size. To this end I use the parameter set r = 1,
a = 2 and b = 1/4. For H = 100 there is an evident
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FIG. 4. Average number of new infections for the SIR model
in 2-dimensional grids with 100 × 100 cities, each with H
habitants. The model parameters are r = 1, a = 2, b = 1/4.
The average was calculated from 100 realizations. a) Y-axis
in linear scale. b) Y-axis in log scale

linear increase of İ as a function of time (Fig. 4, cir-
cles). Furthermore, the numerical results are quite far
from the multi-type mixing approximation (Fig. 4, line).
For H = 1, 000 the numerical solution gets closer to the
multi-type mixing approximation but it follows a linear
growth (Fig. 4, squares). Yet, the linear range keeps
reducing for H = 10, 000 and it is almost absent for
H = 100, 000.

As H increases we observe an increase in the region
characterized by an exponential growth. Within the ex-
ponential growth regime the numerical solution coincides
with the multi-type mixing approximation (Fig. 4, line).

B. Lattice size effects

Second I report a lattice size effect. Based on equation
(37), for a+4b & 1 we can find scenarios where the repro-
ductive number is smaller than 1 for L < Lc and larger
than 1 otherwise. Lc is obtained by solving equation (37)

for L with ρ = 1,

Lc =
π

arccos 1−a
4b

− 1 (44)

For example, for a = 1.1/2 and b = 1.1/4 the multi-type
calculation predicts a transition from decay for L < 4.13
to growth for L > 4.13. Figure 5 reports the average
number of new infections as a function of time for dif-
ferent values of cities size H = 100, 1,000, 10,000 and
100,000 and grid linear size L = 3, 4, 5 and 6. For
H = 10, 000 and 100,000 there is confirmation of the
multi-type mixing prediction. İ decays for L = 3, 4
(L < 4.13) while İ growths for L = 5, 6 (L > 4.13).

Here again there are city/subpopulation size effects.

We do not observe the expected İ growth for L = 5
when H = 100 or 10,00. This example teach us that some
diseases may not generate outbreaks when the network
of cities is small, but as they city network grows they
generate outbreaks.

For the largest city sizes H = 10, 000 and 100,000, I
have plotted the analytical solution calculated from equa-
tion (41). At the early times the points from the numer-
ical simulations fall in the multi-type mixing line. For
longer times there is a deviation from the analytical re-
sults due to the finite population size.

VII. CONCLUSIONS

I have demonstrated the use of the multi-type network
approach and the cartesian product of graphs to calcu-
late the epidemic threshold of spreading dynamics in d-
dimensional grids. These calculations can be deployed
to estimate the epidemic threshold at the country level
aggregating cities/regions of the oder of 100,000 habi-
tants or larger. The largest eigenvalue of the reproductive
number matrix will provide a good estimate of the epi-
demic threshold. The analytical formula for the average
number of new infections will provide a good approxima-
tion to the initial dynamics of the outbreak.

The numerical simulations in 2-dimensional grids un-
covered a gradual transition from linear to exponen-
tial growth with increasing the cities/subpopulation size.
The same is true for epidemic spreading in fully mixed
populations. Depending on the magnitude of R and
the implementation of lockdowns we can expect both
exponential or power law growth [9]. Today countries
are characterized by a network of cities with more than
100,000 habitants. In this context the numerical simu-
lations reported here indicate an exponential growth of
the number of new infections in time. Based on this ob-
servation I find unlikely that geography is the dominant
factor behind the observation of power law growth. In
contrast, the power law growth reported for COVID-19
is consistent with the time scales of the lockdown imple-
mentations [12]. However, I cannot exclude that there
is a combination of both the lockdown truncation of the
disease transmission chain and geographical location.
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FIG. 5. Average number of new infections for the SIR model in 2-dimensional grids with n× n cities, each with H habitants.
The model parameters are r = 1, a = 1.1/2, b = 1.1/8 and n = L. The average was calculated from 1,000,000 realizations.
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