Abstract
Background In 2020, the UK enacted an intensive, nationwide lockdown on March 23 to mitigate transmission of COVID-19. As restrictions began to ease, resurgences in transmission were targeted by geographically-limited interventions of various stringencies. Understanding the spatial scale of networks of human interaction, and how these networks change over time, is critical to inform interventions targeted at the most at-risk areas without unnecessarily restricting areas at low risk of resurgence.
Methods We use detailed human mobility data aggregated from Facebook users to determine how the spatially-explicit network of movements changed before and during the lockdown period, in response to the easing of restrictions, and to the introduction of locally-targeted interventions. We also apply community detection techniques to the weighted, directed network of movements to identify geographically-explicit movement communities and measure the evolution of these community structures through time.
Findings We found that the mobility network became more sparse and the number of mobility communities decreased under the national lockdown, a change that disproportionately affected long distance journeys central to the mobility network. We also found that the community structure of areas in which locally-targeted interventions were implemented following epidemic resurgence did not show reorganization of community structure but did show small decreases in indicators of travel outside of local areas.
Interpretation We propose that communities detected using Facebook or other mobility data be used to assess the impact of spatially-targeted restrictions and may inform policymakers about the spatial extent of human movement patterns in the UK. These data are available in near real-time, allowing quantification of changes in the distribution of the population across the UK, as well as changes in travel patterns to inform our understanding of the impact of geographically-targeted interventions.
Evidence before this study Large-scale intensive interventions in response to the COVID-19 pandemic have been implemented globally, significantly affecting human movement patterns. Mobility data show spatially-explicit network structure, but it is not clear how that structure changed in response to national or locally-targeted interventions.
Added value of this study We used daily mobility data aggregated from Facebook users to quantify changes in the travel network in the UK during the national lockdown, and in response to local interventions. We identified changes in human behaviour in response to interventions and identified the community structure inherent in these networks. This approach to understanding changes in the travel network can help quantify the extent of strongly connected communities of interaction and their relationship to the extent of spatially-explicit interventions.
Implications of all the available evidence We show that spatial mobility data available in near real-time can give information on connectivity that can be used to understand the impact of geographically-targeted interventions and in the future, to inform spatially-targeted intervention strategies.
Data Sharing Data used in this study are available from the Facebook Data for Good Partner Program by application. Code and supplementary information for this paper are available online (https://github.com/hamishgibbs/facebook_mobility_uk), alongside publication.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The following funding sources are acknowledged as providing funding for the named authors. This research was partly funded by the Bill & Melinda Gates Foundation (INV-003174: YL; NTD Modelling Consortium OPP1184344: CABP; OPP1183986: ESN). DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: CABP). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: YL). HDR UK (MR/S003975/1: RME). UK DHSC/UK Aid/NIHR (ITCRZ 03010: HPG). UK MRC (MC_PC_19065: RME, YL). Wellcome Trust (206250/Z/17/Z: AJK), UK MRC (MC_PC_19067, LD), The Alan Turing Institute under the EPSRC (grant EP/N510129/1: LD). This research was partly funded by the National Institute for Health Research (NIHR) using UK Aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (16/137/109: YL; NIHR200908: RME).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This research was approved by the LSHTM Observational Research Ethics Committee (ref 16834-1).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.