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Background 

In 2020, the UK enacted an intensive, nationwide lockdown on March 23 to mitigate 

transmission of COVID-19. As restrictions began to ease, resurgences in transmission were 

targeted by geographically-limited interventions of various stringencies. Understanding the 

spatial scale of networks of human interaction, and how these networks change over time, is 

critical to inform interventions targeted at the most at-risk areas without unnecessarily restricting 

areas at low risk of resurgence. 

Methods 

We use detailed human mobility data aggregated from Facebook users to determine how the 

spatially-explicit network of movements changed before and during the lockdown period, in 

response to the easing of restrictions, and to the introduction of locally-targeted interventions. 

We also apply community detection techniques to the weighted, directed network of movements 

to identify geographically-explicit movement communities and measure the evolution of these 

community structures through time.  

Findings 

We found that the mobility network became more sparse and the number of mobility 

communities decreased under the national lockdown, a change that disproportionately affected 

long distance journeys central to the mobility network. We also found that the community 

structure of areas in which locally-targeted interventions were implemented following epidemic 

resurgence did not show reorganization of community structure but did show small decreases in 

indicators of travel outside of local areas. 

Interpretation 

We propose that communities detected using Facebook or other mobility data be used to 

assess the impact of spatially-targeted restrictions and may inform policymakers about the 

spatial extent of human movement patterns in the UK. These data are available in near real-

time, allowing quantification of changes in the distribution of the population across the UK, as 

well as changes in travel patterns to inform our understanding of the impact of  geographically-

targeted interventions. 
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Putting Research Into Context 

Evidence before this study 

Large-scale intensive interventions in response to the COVID-19 pandemic have been 

implemented globally, significantly affecting human movement patterns. Mobility data show 

spatially-explicit network structure, but it is not clear how that structure changed in response to 

national or locally-targeted interventions. 

Added value of this study 

We used daily mobility data aggregated from Facebook users to quantify changes in the travel 

network in the UK during the national lockdown, and in response to local interventions. We 

identified changes in human behaviour in response to interventions and identified the 

community structure inherent in these networks. This approach to understanding changes in the 

travel network can help quantify the extent of strongly connected communities of interaction and 

their relationship to the extent of spatially-explicit interventions.  

Implications of all the available evidence 

We show that spatial mobility data available in near real-time can give information on 

connectivity that can be used to understand the impact of geographically-targeted interventions 

and in the future, to inform spatially-targeted intervention strategies.  

Data Sharing 
Data used in this study are available from the Facebook Data for Good Partner Program by 
application. Code and supplementary information for this paper are available online 
(https://github.com/hamishgibbs/facebook_mobility_uk), alongside publication. 
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Main Text 

Introduction 
Fine-scale geographic monitoring of large populations provides a valuable resource for 

increasing the accuracy and responsiveness of epidemiological modelling, outbreak response, 

and intervention planning in response to public health emergencies like the COVID-19 

pandemic (1–5). Population and mobility datasets collected from the movement of individuals’ 

mobile phones provide empirical, near-real time metrics of population movement between 

different geographic regions (6). The COVID-19 pandemic response has benefitted from the 

availability of new data sources for measuring human movement, aggregated from mobile 

devices by network providers and popular applications including Google Maps, Apple Maps, 

Citymapper, and Facebook, and network service providers (7). 

 

Travel and movement behavior during epidemics may change in response to imposed 

interventions, perceived risk, and due to seasonal activities such as vacations (8,9). During the 

COVID-19 pandemic, mobility data has been used to assess adherence to movement 

restrictions (10,11), the impact of movement restrictions on the transmission dynamics of 

COVID-19 (12–14), and the socioeconomic impacts of large scale movement restrictions 

(15,16). 

 

In this analysis, we use movement and population data provided by Facebook from March 10 to 

November 1 2020, which records approximately 15 million daily locations of 4.8 million users 

(17). We also used population, age, ethnicity, and socioeconomic deprivation data from the UK 

Office of National Statistics (ONS) to understand the population of users recorded in the 

movement and population data. We identify changes in travel behavior in response to initially 

stringent movement restrictions (March to May 2020) and subsequent easing of restrictions, 

paired with a policy of spatially-targeted interventions in response to local resurgences (May to 

October, 2020). Using network analytic methods to understand the structure of interconnected 

communities in the movement network, we trace the evolution of geographic communities 

through time, comparing them to intervention measures implemented in response to local 

resurgences.  
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Methods 

Facebook Data 
Data provided by the Facebook Data for Good partner program (17) uses aggregated and 

anonymized user data to create a dataset describing user locations in grid cells (Supplemental 

Figure 1). This data is generated from the population of Facebook users with location services 

actively enabled.  

 

We used two datasets; movement and population data, describing users’ modal locations in 

map cells in sequential 8 hour periods. Population data simply records user locations. In the 

movement data, sequential user locations define the beginning and end points of journeys 

between cells. Journeys with fewer than 10 travellers were removed by Facebook prior to data 

sharing to preserve privacy (Supplemental Figure 2). Any cell that did not record any between-

cell journeys with greater than 10 travellers in a given time window was omitted from the 

dataset, regardless of whether that cell recorded an internal number of users greater than 10.In 

our network analysis, we constructed a weighted, directed network where nodes were cells, and 

edge weights were the number of users observed travelling between cells.  

Bing Maps Tile System 
Movement data is referenced to the Bing Maps Tile System, a standard geospatial reference 

used primarily for serving web maps (18). The system is divided into 23 zoom levels ranging 

from global level 1, (map scale: 1:295,829,355.45) to detailed level 23, (map scale: 1:70.53). 

Each Bing Map cell is identified by a “quadkey”, or unique identifier of the zoom level and pixel 

coordinates of an individual cell. In this analysis, all mobility, population, and other census 

datasets were referenced to Bing Maps cells. The movement dataset was referenced to cells at 

zoom level 12 (approximately 4.8 to 6.2 km2 in the UK - measured at 60.77° and 50.59° 

respectively). Facebook population datasets were referenced to cells at zoom level 13 

(approximately 2.4 to 3.1 km2 in the UK - measured at 60.77° and 50.59° respectively). The 

ground resolution of cells varies with latitude, with cells at higher latitudes covering a smaller 

ground area than those at lower latitudes. This distortion results from the distortion inherent in 

the Web Mercator projection (EPSG:3857) used by the Bing Maps Tile System. 
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Demographic information  
We compared the age, population, ethnicity, and socioeconomic deprivation of each cell to the 

population of users recorded in the movement data to identify relationships between the 

percentage of users and these demographic factors. We extracted these variables from national 

statistics agencies (Office for National Statistics, Northern Ireland Statistics and Research 

Agency, Scottish Government, and Welsh Government) and aggregated them to cells. Census 

variables were referenced to different statistical units by country. In Northern Ireland, census 

variables were referenced to Super Output areas (SOAs), in England and Wales, Lower Super 

Output areas (LSOAs), and in Scotland, Data Zones (DZs). Detailed population data was also 

collected from national statistics agencies, providing a measure of population for Small Areas 

(Northern Ireland), Output Areas (OA; England and Wales), and Data Zones (Scotland).  

Census variables referenced to different national statistical areas were aggregated to align with 

mobility datasets at zoom level 12. First, we combined the 2011 population weighted centroids 

of each OA (or equivalent) from the UK Census with 2020 mid-year population estimates in 

each UK country. We then assigned each OA centroid to the cell it falls within. We then joined 

2011-derived census variables (Age, Ethnicity and Socioeconomic Deprivation) to the OA 

centroids and computed an average of each census variable for each cell, weighted by the OA 

population estimates. For socioeconomic deprivation data (recorded as ranks) we ranked the 

weighted average values to create a rank of cells by their population weighted deprivation. OAs 

are much more granular than cells and therefore nested within them in the majority of cases, 

minimising the risk of the cells detrimentally intersecting OAs during the demographic 

assignment. 

 

To assess the correlation between census variables and the proportion of Facebook users in 

each cell, we computed the Pearson correlation coefficient and two-sided p-values between the 

proportion of Facebook users in a cell and each census variable. 

 

Temporal aggregation 
Both Facebook movement and population data are recorded in 8 hour intervals. These data 

display strong and consistent intraday and intraweek patterns. To isolate changes in daily 

mobility, data collected in 8 hour periods were aggregated to daily periods by taking the sum of 

the observed number of travellers along a journey for all periods within a day.  
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Baseline Population Estimates 

To obtain an accurate measurement of the number of users in the Facebook movement and 

population datasets relative to census population estimates, we used baseline population values 

computed during the 45 days prior to the creation of the movement and population data 

collections, from January 29th to March 9th 2020. This baseline population recorded the median 

number of users in a tile for each daily time window in the reference period. We used the 

population dataset, rather than movement dataset, because of the higher resolution and 

reduced impact of censoring on population values. As the population and movement datasets 

are generated from the same population of users in a given period, we are able to directly 

compare the user population from the population dataset with that in the movement dataset. To 

compare user population estimates to movement and census data, we aggregated baseline 

population estimates from zoom level 13 cells to zoom level 12.   

Community Detection 
Community detection methods are algorithms for identifying groups of meaningfully connected 

vertices in a network. Many methods exist, with various tradeoffs on computational 

performance, resolution, or other characteristics (19–22). Different community detection 

methods produce different results because of differences in the network characteristics that they 

use to define communities. To understand the robustness of the communities detected in this 

study, we employed two different algorithms, InfoMap and Leiden. InfoMap assesses the 

movement of a random walker around a network, which identifies communities using the 

partition of the network that minimizes the description length required to describe the 

movements (23). The Leiden algorithm maximizes the modularity of different node partitions, 

identifying the partition for which communities possess stronger connections to community 

members than to other nodes (24,25).  

 

We compared the effect of the different community detection algorithms, and found that they 

aligned hierarchically, where the Leiden algorithm identified geographically larger communities. 

If the communities detected by one method are largely a superset of the communities detected 

by another, with shared boundaries between the defined communities, this likely represents a 

differing hierarchical structure, compared to a different interpretation of community structure. We 

assessed the agreement between community detection methods to understand the stability of 
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detected communities by comparing the proportion of nodes in each community detected using 

InfoMap with all communities determined using Leiden, and vice versa (Supplemental Figure 9). 

This comparison allows for the computation of the proportion of shared nodes between both 

algorithms. The maximum and mean overlap of communities in each algorithm helped to identify 

the agreement between each method of community detection. In general we found that Leiden 

detected larger communities, for which the InfoMap communities were (for the most part) sub-

communities. 

Community Label Inheritance 
The community detection methods used in this study identified communities each day. To track 

the evolution of communities over the study period, we employed a heuristic approach, 

assigning the label of a given community identified in a certain time step to that community with 

the highest number of shared nodes in the following time step (26). When multiple communities 

in a certain time step “claim” the same community in the following timestep, the community with 

the closest size to the community in the following timestep “wins” the right to pass its own label 

to the following timestep.  

COVID-19 Data 
We used confirmed COVID-19 cases from the UK Pillar 1 and Pillar 2 testing schemes (27). 

Pillar 1 is predominantly hospital-based tests including patients and health care workers. Pillar 2 

is symptomatic community testing on demand, and represents the bulk of the testing in the UK. 

Data on the number of confirmed SARS-CoV-2 positive tests by specimen date were available 

at the Lower Tier Local Authority level (28). 

 

To compare confirmed COVID-19 cases to movement indicators, we measured the total 

proportion of travellers leaving a grid cell in monthly periods for all cells in England. Cells were 

then assigned to LTLAs by their maximum areal overlap.  

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 15, 2021. ; https://doi.org/10.1101/2020.10.26.20219550doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.26.20219550
http://creativecommons.org/licenses/by/4.0/


 

9 

Results 

Movement patterns observed 
Using COVID-19 case data at Lower Tier Local Authority (LTLA) level in England, we identified 

a consistent association between the proportion of users travelling outside their grid cells and 

the number of cases in LTLAs per month during the study period (Figure 1, Supplemental 

Figure 3). While the strength of this association varies at different stages of the pandemic, it 

provides evidence for the intuitive relationship between increased rates of travel outside of local 

areas and increased COVID-19 prevalence.  

 
Figure 1. The relationship between movement and COVID-19 cases. a) Daily reported SARS-CoV-2 tests in each 
NHS region. b) The relationship between the percentage of users travelling outside their cell and the total number of 
reported SARS-CoV-2 positive tests, by month of the study period. Dots show lower-tier local authorities coloured by 
their NHS region as in panel a. 
 

To understand the representativeness of Facebook data to the general population, we explored 

the size of the population of Facebook users included in the movement dataset, and compared 

this population to 2019 UK census population estimates. The dataset recorded an average of 

4.5 million users per 8 hour period, ranging from 5.8 million on March 29th between 4pm and 

midnight, to 3.7 million on August 9th between midnight and 8am (Figure 2a).  
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The percentage of Facebook users per cell was comparable in the four nations of the UK 

(Figure 2b) and was homogeneous across the study area (Figure 2d). The ratio of number of 

Facebook users and total population was relatively consistent across cells, (Figure 2c). There 

were no strong associations between the percentage of Facebook users and the average age, 

percent minority ethnic, population density, or index of multiple deprivation of each cell 

(Supplemental Figures 4-6). 

 

Figure 2. Characteristics of the between-cell Facebook mobility dataset. a) The daily average number of users. 
b) The probability density functions of the percentage of Facebook users in the census population for cells by country 
(outliers > 75% removed, see d)). c) The relationship between the number of Facebook users and census population 
for all cells. d) The spatial distribution of the percentage of Facebook users in the census population for all cells. Grey 
cells are censored due to low numbers. Red cells are outliers recording >75% of population as users. Note that 12 
cells around the town of Swindon are missing due to a data processing error prior to data sharing.  
 

Network Structure 
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To quantify how the structure of the overall network changed through time, we computed the 

edge betweenness centrality of connections between cells, a measure of the relative importance 

of a given connection in the network (Figure 3a, b). Comparing the period preceding the first 

national intervention with the period of interventions between March 23, 2020 and May 10, 

2020, we compared the likelihood of a journey remaining in the top 10% most central journeys 

during the intervention period (Figure 3d).  During the intervention period we observe a 

significant decrease in the volume of travel throughout the network, particularly affecting long 

distance journeys (Supplemental Figure 7). Further, we observe a disproportionate reduction in 

journeys which were highly central before the introduction of national restrictions, reflecting the 

reduction of travel along central connections which tend to be highly central in the network 

(Supplemental Figure 8). Generally, moderately central journeys become highly central after the 

introduction of nationwide restrictions, while less central journeys remain less central. 

 

Preceding and immediately following the announcement of nationwide travel restrictions on 

March 23, 2020, we observed a decrease in the volume and distance of between-cell travel, 

measured by the percentage of users leaving a cell in a given 8-hour period (Figure 3c). While 

we continued to observe a weekly trend of increased between-tile movements during weekdays, 

the variance of weekly between-tile journeys decreased during the period of national 

interventions (Supplemental Figure 9). 

 

We also measured the distance travelled per user in the weighted, directed network, observing 

a decrease in the overall distance travelled by users during the period of national interventions 

and a subsequent increase in this distance throughout the summer. As the overall travel in the 

network decreased, we observed a sharper decrease in the volume of long distance journeys,  

with most long distance journeys absent from the movement network during national restrictions 

(Supplemental Figure 7). This decrease reflects both the decreasing volume of long distance 

travel, and the increased effect of censoring during periods of lower travel volumes.  
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Figure 3. Network structure through time. All network connections on a) Tuesday March 10th 2020, the day of 
maximum network travel and b) April 14th, 10 days after the announcement of national movement restrictions. The 
thickness of edges corresponds to their edge betweenness centrality. c) The percentage of users travelling out of 
their cell through time and d) the likelihood of a journey to remain highly central after the introduction of national 
interventions. We compare the betweenness quantile for journeys from March 10 to March 23, 2020 (preceding 
national interventions) and from March 23 to May 10, 2020 (period of national interventions).  
 

Community Detection  
We identified geographically-explicit “communities of interaction” in the network of user 

movements using the InfoMap and Leiden algorithms (Supplemental Figures 10-11).  

We observed an increase in the number of identified communities and a corresponding 

decrease in their size following the introduction of nationwide intervention measures on March 

23rd, 2020 (Figure 4 and Supplemental Figure 12). The cell-level network also became more 

sparse as cells were censored from the dataset due to the lower number of journeys between 

cells. Restrictions were eased incrementally between May and July 2020, during which time we 

observed an increase in the volume of between-cell movements and an increase in the 

geographic area and connections between communities.  

 

We found that the most persistent communities existed in some large population centers 

(Supplemental Figure 14). This reflects both the smaller influence of censoring on higher 

population cells as well as the continued existence of movement networks, though reduced, 

around population centres. Persistent communities were identified in Manchester, Newcastle, 

Glasgow, and Edinburgh, but not in London, which regularly split into more communities on 

weekends (Supplemental Figure 13-14). We did not find evidence that community stability is 

associated with population density (Supplemental Figure 15). 
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By transferring community labels between time windows, we constructed a network of 

communities in which each community is a node, connected to other communities in a directed 

network weighted by the number of users travelling between community pairs (Figure 4). In this 

network, the degree of all nodes decreased after the implementation of nationwide interventions 

and the overall reduction of between-cell journeys (Supplemental Figure 16). Nonetheless, we 

did not observe a significant reorganisation in the hierarchy of connections between 

communities. 

 

 
Figure 4. Community detection using the InfoMap algorithm. a) Communities detected on individual days through 
the time series. Missing tiles which record fewer than 10 users moving have been censored for privacy and appear 
white. Communities outlined by black lines are coloured by NHS region. Those communities appear in b) in the 
community network. The number of communities on each day (left to right): 189, 288, 218, 209. 

Local Lockdown Extents 
After the period of national interventions, the UK introduced local area interventions at differing 

levels of stringency. The first such intervention was implemented in Leicester on June 30, 2020 

in response to a local resurgence (Fig 5b). To understand the impact on the mobility of users, 
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we assessed changes in the volume of travel and network topology before and after 

introduction.  

 

We measured the connection between cells overlapping areas of local interventions in four 

areas: Leicester (Fig 5), Manchester, the North West, and the North East (Supplementary 

Figures 17-19) to assess the impact on volume of travel and the isolation of intervention areas 

from the broader UK movement network. We found that, while movement indicators did 

decrease, particularly in Leicester, the response was smaller than during the first national 

lockdown (Figure 5a). 

 

Motivated by the need to identify communities associated with epidemic resurgences and 

responses to reactive interventions, we compared the extent and date of local interventions with 

the spatial extent and temporal persistence of network communities (Figure 5c). We found that 

network communities remained relatively stable after the introduction of intervention measures 

in all areas, with some peripheral changes to movement communities in Manchester, the North 

West, and North East (Supplementary Figures 17-19).  

 

 
Figure 5. Response to the introduction of local interventions. The daily percentage of users travelling between 
cells in the intervention area and the connected community, and the weekly average degree of intervention cells (a). 
Confirmed cases in the intervention area (b). Changes in the community structure before and after the introduction of 
local intervention (c). 

 
From July 2020 onwards, the geographic extent of local area interventions  was in closer 

agreement with movement communities, particularly in Manchester (Supplemental Figure 17). 

Some interventions also spanned multiple movement communities, as in the North West and 
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North East of England (Supplemental Figures 18-19). Early local intervention measures at 

limited spatial extents may not have fully encompassed the area of transmission resurgence, 

however UK policy changed over time, beginning to enforce collaborative local area 

interventions comprising multiple Local Authorities. Additionally, movement communities evolve 

over time, and have the potential to shift following local area interventions, requiring an 

understanding of real-time patterns of movement to monitor the appropriateness of a given 

measure. 

Discussion 
This study used a large, anonymized movement dataset to quantify changes in the UK 

movement network and assessed how geographic communities were affected by interventions. 

Using movement communities, we can identify strongly connected areas that can be used to 

inform the spatial scale of geographically-targeted interventions to respond to resurgences of 

COVID-19. We also explored the structure of the UK travel network through the pandemic, 

identifying variations in the central connections between population centres and changing travel 

patterns in response to the introduction of public health measures. 

 

Gridded mobility datasets such as those used in this study provide granular, near real-time 

information about the movement patterns of a large sample of the UK population. While these 

datasets could usefully inform epidemic responses (15,29–31), there remain questions about 

the generalizability of the movement recorded in these datasets to the movements of the overall 

population (32,33). The privacy preserving structure of the Facebook movement dataset means 

that low frequency journeys are not recorded, precise locations are replaced by grid cell 

references, and data is provided in a uniform-area grid cells which vary in population size. 

Ideally, multiple mobility datasets should be analysed to improve the interpretation of changes in 

mobility indicators.  

 

In response to the nationwide lockdown introduced March 23rd, the UK mobility network 

changed drastically. The movement network became more sparse, with reductions in travel 

volume and distance. These changes disproportionately affected long distance journeys and 

highly central journeys, important connections which integrated geographically distant areas in 

the broader UK travel network.   
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Using a network analysis of mobility data, we identified geographically distinct communities with 

strong interconnections that are relevant to policy responses focused on limiting transmission in 

response to geographically-limited disease resurgences. These communities provide empirical 

boundaries that can inform policy responses. We found that these communities were stable 

around some population centres, and that the spatial extent and number of communities 

changed during the implementation of public health interventions, particularly during the national 

intervention between March and May 2020. As restrictions evolve in the UK, the boundaries and 

size of communities may change, a response to new patterns of travel, home-working, and 

commuting.  

  

In response to disease resurgences in a particular area, determining the geographic extent of 

reactive interventions should be driven by areas at risk of increased transmission, which may 

not intersect with administrative boundaries. We found that while communities tended to 

stabilise around settlements, there was disagreement between the extent of these communities 

and the boundaries at which local area interventions have been introduced in the UK. While we 

do not advocate the sole use of movement communities to delineate the extent of intervention 

measures, these communities provide valuable information in near-real time about the extent of 

typical patterns of travel, their temporal variations, and “catchment areas” of movement around 

a given area.  

 

There are several caveats to the methods of community detection used in this study, as the 

extent of  communities could be influenced by the level of aggregation of the Facebook mobility 

data, and cells were assigned to a single community each day. While we conducted a sensitivity 

analysis using two methods for identifying communities, there are a wide variety of community 

detection algorithms which emphasize different aspects of network structure. Questions also 

remain about the general reliability of community detection methods, which have been 

developed on well understood network structures, when applied to real-world networks (20). 

The effect of local area interventions on travel depends on the specifics of each intervention and 

their stringency. Additionally, interventions occur at multiple spatial scales, and across 

overlapping time periods. For example, in the UK, national interventions coincide with local 

interventions, and each may contribute differently to changes in movement behaviour. 
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Conclusion 
Data-driven approaches using mobility data can help to quantify patterns of travel and inform 

geographically-targeted public health interventions. 
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