Abstract
The interplay between the virus, infected cells and the immune responses to SARS-CoV-2 is still under debate. Extending the basic model of viral dynamics we propose here a formal approach to describe the neutralizing versus weakly (or non-)neutralizing scenarios and compare with the possible effects of antibody-dependent enhancement (ADE). The theoretical model is consistent with data available from the literature; we show that weakly neutralizing antibodies or ADE can both give rise to either final virus clearance or disease progression, but the immuno-dynamic is different in each case. Given that a significant part of the world population is already naturally immunized or vaccinated, we also discuss the implications on secondary infections infections following vaccination or in presence of immune system dysfunctions.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Ghozlane Yahiaoui is supported by the Engineering and Physical Sciences Research Council (EPSRC) U.K.: CDT Grant Ref. EP/L015811/1.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
No direct human data used.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* The order of the authors is alphabetic
Antoine.Danchin{at}normalesup.org
Oriane.Pagani-Azizi{at}espci.fr
Gabriel.Turinici{at}dauphine.fr
Ghozlane.Yahiaoui{at}maths.ox.ac.uk
Viral data fit is improved, theoretical mathematical proofs of the stability of the equilibria added.
Data Availability
All data is available from public sources.