Abstract
The American dog tick, Dermacentor variabilis (Say), is a vector for several human disease causing pathogens such as tularemia, Rocky Mountain spotted fever, and the understudied spotted fever group rickettsiae (SFGR) infection caused by Rickettsia montanensis. It is important for public health planning and intervention to understand the distribution of this tick and pathogen encounter risk. Risk is often described in terms of vector distribution, but greatest risk may be concentrated where more vectors are positive for a given pathogen. When assessing species distributions, the choice of modeling framework and spatial layers used to make predictions are important. We first updated the modeled distribution of D. variabilis and R. montanensis using MaxEnt, refining bioclimatic data inputs, and including soils variables. We then compared geospatial predictions from five species distribution modeling (SDM) frameworks. In contrast to previous work, we additionally assessed whether the R. montanensis positive D. variabilis distribution is nested within a larger overall D. variabilis distribution, representing a fitness cost hypothesis. We found that 1) adding soils layers improved the accuracy of the MaxEnt model; 2) the predicted ‘infected niche’ was smaller than the overall predicted niche across all models; and 3) each model predicted different sizes of suitable niche, at different levels of probability. Importantly, the models were not directly comparable in output style, which could create confusion in interpretation when developing planning tools. The random forest (RF) model had the best measured validity and fit, suggesting it may be most appropriate to these data.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
A.L.R. and H.K.S. are federal/contracted employee of the United States government. This work was prepared as part of their official duties. Title 17 U.S.C. 105 provides that `copyright protection under this title is not available for any work of the United States Government.' Title 17 U.S.C. 101 defines a U.S. Government work as work prepared by a military service member or employee of the U.S. Government as part of that person's official duties. Funding: CAL, HDG, and SJR were funded by NIH 1R01AI136035-01. ALW and SJR were additionally funded by CDC grant 1U01CK000510-01: Southeastern Regional Center of Excellence in Vector-Borne Diseases: The Gateway Program. This project was also funded by the Department of Defense Global Emerging Infections System (GEIS), work unit 000188M.0931.001.A0074. This publication was supported by the Cooperative Agreement Number above from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention. The views expressed in this article reflect the results of research conducted by the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the United States Government.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
n/a
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
all data are publicly available as stated in the paper itself