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Abstract: 20 

The American dog tick, Dermacentor variabilis (Say), is a vector for several human disease 21 

causing pathogens such as tularemia, Rocky Mountain spotted fever, and the understudied 22 

spotted fever group rickettsiae (SFGR) infection caused by Rickettsia montanensis. It is 23 

important for public health planning and intervention to understand the distribution of this tick 24 

and pathogen encounter risk. Risk is often described in terms of vector distribution, but greatest 25 

risk may be concentrated where more vectors are positive for a given pathogen. When assessing 26 

species distributions, the choice of modeling framework and spatial layers used to make 27 

predictions are important. We first updated the modeled distribution of D. variabilis and R. 28 

montanensis using MaxEnt, refining bioclimatic data inputs, and including soils variables. We 29 

then compared geospatial predictions from five species distribution modeling (SDM) 30 

frameworks. In contrast to previous work, we additionally assessed whether the R. montanensis 31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.29.20204149doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.09.29.20204149
http://creativecommons.org/licenses/by-nc-nd/4.0/


positive D. variabilis distribution is nested within a larger overall D. variabilis distribution, 32 

representing a fitness cost hypothesis. We found that 1) adding soils layers improved the 33 

accuracy of the MaxEnt model; 2) the predicted ‘infected niche’ was smaller than the overall 34 

predicted niche across all models; and 3) each model predicted different sizes of suitable niche, 35 

at different levels of probability. Importantly, the models were not directly comparable in output 36 

style, which could create confusion in interpretation when developing planning tools. The 37 

random forest (RF) model had the best measured validity and fit, suggesting it may be most 38 

appropriate to these data.  39 

Keywords: Species distribution models; ecological niche models; spotted fever group; boosted 40 

regression trees; MaxEnt; Random Forests   41 
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Introduction 43 

The American dog tick (Dermacentor variabilis) is primarily distributed east of the 44 

Rocky Mountains and the Pacific coastal region in the USA, where it is a known vector of the 45 

pathogens that cause both tularemia, (Francisella tularensis) and Rocky Mountain spotted fever 46 

(RMSF) (Rickettsia rickettsii). Both diseases can be fatal if left untreated, and therefore 47 

understanding the risk of exposure to D. variabilis bites is an essential part of public health 48 

planning. In addition to these more well-known vector-borne diseases, D. variabilis can also 49 

transmit Rickettsia montanensis, a spotted fever group rickettsiae (SFGR). Rickettsia 50 

montanensis was previously thought to be nonpathogenic in humans (Baldridge et al. 2010) but 51 

has more recently been implicated as the agent in an afebrile rash illness (McQuiston et al. 2012). 52 

In addition to the potential for human pathogenicity, R. montanensis may play an interesting role 53 

in the manifestation of other SFGR dynamics by inhibiting tick coinfection of another Rickettsia 54 

spp., or conferring antigenic responses in humans exposed to R. montanensis, providing 55 

immunity (partial or complete) to other SFGR pathogens (Baldridge et al. 2010). This has 56 

potential implications for the transmission cycles of other SFGR, namely R. rickettsii, which 57 

occurs sympatrically with R. montanensis. Rickettsia montanensis infections may also affect 58 

SFGR disease surveillance and case detection. In 2010, the Centers for Disease Control (CDC) 59 

designated a new category for reporting rickettsial diseases to reflect diagnostic uncertainty in 60 

cases (CDC 2010, 2019a). The new reporting group, Spotted Fever Rickettsiosis (SFR), includes 61 

cases of RMSF, Pacific Coast tick fever, Rickettsia parkeri rickettsiosis (Tidewater spotted 62 

fever), and rickettsialpox. The number of SFR cases reported in the USA has shown a generally 63 

increasing trend since 2010, with more than 6,200 cases reported in 2017 (CDC 2019a). It is 64 

plausible that R. montanensis is the agent responsible for some of these SFR cases, as commonly 65 
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used serologic tests are not able to differentiate rickettsial pathogens because of immunological 66 

cross-reactivity (CDC 2019a, Nicholson and Paddock 2019). The public health implications of R. 67 

montanensis infections, both for human health and case surveillance, has fueled interest in 68 

investigating this pathogen. 69 

The previous assumption of R. montanensis being nonpathogenic in humans, and non-70 

specific point of care tests for SFGR has led to few publications on this pathogen and its known 71 

or potential distribution, as pointed out by Hardstone, Yoshimizu and Billeter (2018). Estimation 72 

of the geographic distribution for pathogens and their vectors is a crucial component in the 73 

development of public health agency policies and recommendations. In 2016, St. John and 74 

colleagues (St. John et al. 2016) conducted a study to describe the predicted distributions of R. 75 

montanensis positive and negative D. variabilis in the United States using the MaxEnt modeling 76 

environment to generate species distribution models (SDMs). Species distribution models have 77 

become increasingly prevalent in the disease ecology literature, with examples spanning a range 78 

of infectious disease systems, spatial scales, and geographic foci (Gurgel-Gonçalves et al. 2012, 79 

Blackburn et al. 2017, Lippi et al. 2019). This methodology has been embraced as an accessible 80 

means of quickly estimating the geographic range of a given pathogen or vector, which is used in 81 

many instances to infer risk of exposure.  82 

Species distribution models are attractive from a logistical standpoint for mapping 83 

potential exposure to vectors as they provide a means of estimating suitable geographic ranges 84 

with presence-only data, which are often available through public surveillance networks. Briefly, 85 

SDMs are made by correlating location records of species occurrence with underlying 86 

environmental conditions in a geospatial modeling environment, and the model is then projected 87 

to unsampled portions of the landscape (Peterson and Soberón 2012). There is now a range of 88 
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modeling algorithms and freely available software packages that, when coupled with the 89 

availability of georeferenced occurrence records, have made SDMs commonly used across 90 

disciplines in recent years (Townsend Peterson et al. 2007, Elith et al. 2008, Phillips and Dudík 91 

2008, Elith and Leathwick 2009, Evans et al. 2011, Naimi and Araújo 2016). Nevertheless, 92 

caution must be exercised when modeled distributions are put into a health advisory context. 93 

Consensus in SDMs is notoriously difficult to achieve, as discrepancies in potential distributions 94 

may arise from choice of modeling method, user-specified parameters, selection of 95 

environmental predictors, and biases in data inputs (Carlson et al. 2018).  96 

The objectives of this study were as follows: i) expand the methodology used to generate 97 

the predicted range map of D. variabilis presented in St. John et al. (St. John et al. 2016) by 98 

creating SDMs in MaxEnt with an updated and refined set of environmental predictors; ii) 99 

explore differences across four additional SDM algorithms; and iii) compare potential 100 

geographic distributions of D. variabilis and the subset of D. variabilis that tested positive for R. 101 

montanensis to assess if there were any appreciable differences in the ‘infected’ niche.  102 

 103 

Methods 104 

Presence data  105 

Locations of D. variabilis in the US from 2002-2012, which tested both positive and 106 

negative for R. montanensis, are described in St John et al. (2016). Data were openly available 107 

through VectorMap (http://vectormap.si.edu/dataportal/), a project of the Walter Reed 108 

Bioinformatics Unit, housed at the Smithsonian Institution Washington DC (St. John et al. 2016). 109 

These data were collected primarily through reports to United States military installations and as 110 
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part of passive vector surveillance studies. Prior to implementing modeling procedures, we 111 

conducted data thinning on species occurrence points via the spThin package in R (ver. 3.6.1) (R 112 

Core Team 2019), which uses a spatial thinning algorithm to randomize the removal of 113 

occurrence locations within a specified distance threshold (Aiello-Lammens et al. 2015). The 114 

resulting dataset retained spatially unique records of species presence within 10km, the spatial 115 

resolution of the study. Locations of tick occurrences in these data were provided as either the 116 

location of collection or the associated medical treatment facility. Correlative SDMs are 117 

susceptible to the effects of geographic sampling biases, where overrepresented locations may 118 

erroneously drive associations between environmental conditions at oversampled locations and 119 

species occurrence (Aiello-Lammens et al. 2015). Spatial thinning of occurrences at the chosen 120 

spatial resolution minimizes the potential effects of sampling bias in this dataset, where locations 121 

near reporting medical facilities may be overrepresented.  122 

Environmental data layers 123 

Species distribution models, of the type we present in this study, require gridded 124 

environmental data layers as input for building models and making spatial predictions. For 125 

comparability with the previous study (St. John et al. 2016), and to maintain consistency across 126 

algorithms in this paper, we used interpolated bioclimatic (BIOCLIM) layers from 127 

WorldClim.org at a 10km resolution selected to match the spatial resolution of tick occurrence 128 

data (Fick and Hijmans 2017). The 19 BIOCLIM variables consist of long-term averages of 129 

temperature, precipitation, and associated measures of extremes and seasonality. 130 

In addition to the original layer set from the previous study, we chose to add soils layers 131 

to our candidate environmental variables, as ticks are frequently found in the leaf-litter or debris 132 

and considered largely soil-dwelling organisms (Burtis et al. 2019). The International Soil 133 
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Reference Information Centre (ISRIC) SoilGrids product provides a global suite of 195 standard 134 

numeric and taxonomic soil descriptors at seven standard depths (Hengl et al. 2017). As ticks are 135 

sensitive to abiotic soil attributes such as soil moisture (Burtis et al. 2019), we selected two 136 

layers of soil data for inclusion in the candidate variable set for model building; soil organic 137 

carbon density and available soil water capacity until wilting point to describe the potential water 138 

capacity and retention of soils. A standard depth of 0cm was chosen to approximate the surface 139 

and leaf litter conditions that ticks may encounter in the environment. Gridded soil layer 140 

products, aggregated to a spatial resolution of 10km with the GDAL software package, were 141 

used to match the resolution of the study (GDAL/OGR contributors 2020). 142 

Collinearity in environmental predictor variables is a well-described issue affecting SDM 143 

output, potentially increasing model instability and uncertainty in predictions (De Marco and 144 

Nóbrega 2018). We reduced collinearity in environmental variable inputs via variance inflation 145 

factor (VIF), wherein only those layers with values below a specified threshold (th=10) were 146 

used in model building (Chatterjee and Hadi 2006). 147 

Model implementation 148 

We used the ‘sdm’ package in R (ver. 3.6.2) to fit and spatially project SDMs for positive 149 

ticks and the combined dataset of positive and negative ticks (Naimi and Araújo 2016). The sdm 150 

package provides a flexible modeling platform for building SDMs, assessing model accuracy, 151 

and projecting output. Choice of modeling method can result in drastically different predictions 152 

of species ranges. To assess variation in potential distributions as an artifact of methodology, we 153 

used five commonly implemented modeling algorithms for estimating species ranges. These 154 

included two regression methods, generalized linear model (GLM) and generalized additive 155 

model (GAM), and three machine learning methods: maximum entropy (MaxEnt), random 156 
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forests (RF), and boosted regression trees (BRT) (McCullagh and Nelder 1998, Breiman 2001, 157 

Wood 2006, Elith et al. 2008, Phillips and Dudík 2008). We additionally created an SDM 158 

modeling ensemble, where predictions were weighted by accuracy metrics and averaged across 159 

methods (Araujo and New 2007). Model ensembles have been criticized due to performance 160 

issues and poor reporting practices (Hao et al. 2019) but are widely used. In spite of known 161 

issues, we included the ensemble method for the purposes of comparison, as SDM ensembles are 162 

prolific in the literature and provide a useful tool for combining the results from the various 163 

model approaches.  164 

Model parameterization also heavily influences resulting predictions of species’ 165 

distributions. While model settings vary depending on method, they are generally chosen based 166 

on known attributes of the target species (e.g. physiological thermal limits, nonlinear responses 167 

to environmental drivers, etc.), intended application of results (e.g. hypothesis testing, biological 168 

interpretation of niche, designing interventions, etc.), or to address issues with bias and small 169 

sample size (Merow et al. 2013, Morales et al. 2017). Dermacentor variabilis are habitat 170 

generalists, and in contrast with many arthropod systems, little is known for acarids particularly 171 

regarding quantitative relationships with environmental conditions. We therefore used default 172 

modeling parameters for each method as defined in the sdm modeling platform. Five hundred 173 

model replications were run for each method, using a random subsampling of occurrence records 174 

(80%) for each model. Because we used presence-only data of species occurrences, pseudo-175 

absences (n=1,000) were randomly generated throughout the study region within the sdm 176 

modeling procedure for each model run. Accuracy metrics were derived via a random 177 

subsampling (20%) of testing data, withheld from the model building process. Four measures of 178 

model accuracy were used to assess model output. These included the receiver operator 179 
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characteristic (ROC) curve with area under the curve (AUC), true skill statistic (TSS), model 180 

deviance, and mean omission (i.e. false negatives).  181 

Spatial predictions were made by projecting the mean of all 500 models for a given 182 

method onto the study area. Overlap in geographic predictions between ticks positive for R. 183 

montanensis and the full dataset of tick occurrences (i.e. R. montanensis positive and negative 184 

ticks) was assessed by reclassifying modeled probabilities as binary geographic distributions (i.e. 185 

presence and absence) in ArcMap (ver.10.4), where raster cells with predicted occurrence ≥ 50% 186 

were considered present (ESRI 2016). Reclassified distributions were combined using the 187 

‘Raster Calculator’ tool in the Spatial Analyst extension of the program ArcMap, allowing for 188 

the visualization of range overlap between datasets.  189 

Results 190 

The full dataset of georeferenced D. variabilis occurrences downloaded from VectorMap 191 

was comprised of 3,771 records, 135 of which had tested positive for R. montanensis. Spatial 192 

thinning of occurrence records resulted in 432 unique locations of D. variabilis, where a subset 193 

of 44 records was positive for R. montanensis (Fig. 1). Models for both the full set of D. 194 

variabilis occurrence records, and the pathogen positive subset, were built with a reduced set of 195 

VIF-selected environmental variables which included annual mean temperature, mean diurnal 196 

temperature range, temperature seasonality, mean temperature of the wettest quarter, mean 197 

temperature of the driest quarter, precipitation seasonality, precipitation of the warmest quarter, 198 

precipitation of the coldest quarter, soil organic carbon density, and available soil water capacity 199 

(Table 1).  200 

  201 
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Fig. 1. Occurrence records for D. variabilis, and D. variabilis infected with R. montanensis, used 202 
in building species distribution models (SDMs). 203 

204 

Table 1. Environmental input datasets used in model building selected via variable inflation 205 
factor (VIF). 206 

Environmental Variable (unit) Coded Variable Name Data Source 
Annual Mean Temperature (˚C) Bio 1 Bioclim 
Mean Diurnal Range (˚C) Bio 2 Bioclim 
Temperature Seasonality Bio 4 Bioclim 
Mean Temp of Wettest Quarter (˚C) Bio 8 Bioclim 
Mean Temp of Driest Quarter (˚C) Bio 9 Bioclim 
Precipitation Seasonality Bio 15 Bioclim 
Precip of Warmest Quarter (mm) Bio 18 Bioclim 
Precip of Coldest Quarter (mm) Bio 19 Bioclim 
Soil Organic Carbon Density OC Dens ISRIC 
Available Soil Water Capacity Until Wilting WWP ISRIC 
 207 

 208 

ed 
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Accuracy metrics for averaged SDMs produced with each modeling method are 209 

presented in Table 2. The averaged model built with RF had the highest predictive power, 210 

relative to low deviation and omission error, for the full dataset (AUC=0.96, TSS=0.79, 211 

deviance=0.47, mean omission=0.11) and subset of positive ticks (AUC=0.93, TSS=0.81, 212 

deviance=0.20, mean omission=0.10). MaxEnt models also performed well, albeit with higher 213 

mean omission error for the full dataset (AUC=0.95, TSS=0.83, deviance=0.23, mean 214 

omission=0.12) and subset of positive ticks (AUC=0.95, TSS=0.77, deviance=0.66, mean 215 

omission=0.12). Averaged models produced with GLM for full dataset (AUC=0.90, TSS=0.70, 216 

deviance=0.80, mean omission=0.15) and positive subset (AUC=0.92, TSS=0.76, 217 

deviance=0.23, mean omission=0.15), and BRT for the full dataset (AUC=0.90, TSS=0.69, 218 

deviance=0.89, mean omission=0.15) and positive subset (AUC=0.91, TSS=0.77, 219 

deviance=0.27, mean omission=0.13) had relatively lower performance, with lower accuracy 220 

metrics and higher error compared to other methods.  221 

Table 2. Accuracy metrics for species distribution models of Dermacentor variabilis ticks built 222 
with five modeling methods including generalized linear model (GLM), maximum entropy 223 
(MaxEnt), generalized additive model (GAM), random forests (RF), and boosted regression trees 224 
(BRT). 225 

Method Dataset AUC TSS Deviance Mean 
Omission 

GLM 
Positive 0.92 0.76 0.23 0.15 

All 0.90 0.70 0.80 0.15 

GAM 
Positive 0.92 0.79 0.70 0.11 

All 0.95 0.79 0.55 0.12 

MaxEnt 
Positive 0.95 0.83 0.23 0.12 

All 0.95 0.77 0.66 0.12 

BRT 
Positive 0.91 0.77 0.27 0.13 

All 0.90 0.69 0.89 0.15 

RF 
Positive 0.93 0.81 0.20 0.10 

All 0.96 0.79 0.47 0.11 
 226 
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The overall pattern of estimated geographic distributions resulting from models built with 227 

all D. variabilis records was similar across methods, where the highest probabilities of suitable 228 

habitat were predicted in eastern United States, with some area in the West also identified as 229 

potentially suitable (Fig. 2). However, estimated probabilities of occurrence varied greatly across 230 

methods, with BRT (maximum 66.68%) and MaxEnt (maximum 67.08%) yielding generally low 231 

probabilities, and GLM (maximum 97.81%), GAM (maximum 99.60%), and RF (maximum 232 

99.98%) producing models with generally higher probabilities of occurrence. The averaged 233 

ensemble of model predictions yielded intermediate probabilities (maximum 81.38%). D. 234 

variabilis was predicted across models to occur with relatively high probability in the 235 

northeastern United States, including areas in the states of Delaware, Pennsylvania, New Jersey, 236 

Connecticut, Maryland, Massachusetts, and Maine, and in the southern states of Virginia, West 237 

Virginia, Kentucky, Tennessee, North Carolina, and South Carolina. Lower probabilities of 238 

occurrence (i.e. < 50%), spanning much of the Midwest and limited areas in the West, were also 239 

consistent across models. The BRT model estimates the potential range of D. variabilis to extend 240 

across the entire North American continent, albeit with very low probability ranging 20-30%.  241 

  242 
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Fig. 2. Predicted geographic distributions of D. variabilis ticks. Distributions were estimated 243 
using five common modeling methods including generalized linear model (GLM, A), 244 
generalized additive model (GAM, B), maximum entropy (MaxEnt, C), boosted regression trees 245 
(BRT, D), random forests (RF, E), and a weighted ensemble of these five methods (F).  246 

 247 

  248 
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The predicted distribution of D. variabilis which tested positive for R. montanensis was 249 

geographically constrained compared to the distributions estimated with the full dataset (Fig. 3).  250 

Fig. 3. Predicted geographic distributions of D. variabilis ticks infected with R. montanensis. 251 
Distributions were estimated using five common modeling methods including generalized linear 252 
model (GLM, A), generalized additive model (GAM, B), maximum entropy (MaxEnt, C), 253 
boosted regression trees (BRT, D), random forests (RF, E), and a weighted ensemble of these 254 
five methods (F). 255 

 256 
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This pattern of restricted distribution was observed for all projected models, regardless of 257 

methodology. Four models (GLM, GAM, MaxEnt, and RF) project the highest probability for 258 

the occurrence of positive ticks in eastern states. The GAM, MaxEnt, and RF models predicted 259 

larger geographic extents for positive ticks, where high probabilities of occurrence (> 50%) 260 

spanned portions of states including Virginia, Maryland, Delaware, Pennsylvania, Connecticut, 261 

Rhode Island, and Massachusetts. The potential range of positive ticks in the East predicted via 262 

GLM were further restricted, where high probabilities for occurrence were observed in Virginia, 263 

Maryland, and New Jersey. Portions of Kentucky were also predicted to be suitable for positive 264 

ticks with high probability with three models (GAM, MaxEnt, and RF).The estimated range of 265 

positive ticks generated with BRT also included areas spanning states in the South, the 266 

Northeast, and some locations in the West. However, maximum probabilities of occurrence for 267 

positive ticks predicted with the BRT model are very low, not exceeding 40%.  268 

Environmental factors that contributed the most to model averages for D. variabilis 269 

presence varied across methods. The top contributing environmental variable was precipitation 270 

seasonality for the GLM (81%), BRT (84%), and RF (26%) models; mean diurnal temperature 271 

range (30%) and mean annual temperature (25%) contributed the most to GAM models; mean 272 

annual temperature (28%) was most important for MaxEnt models (STable 1). Variable response 273 

curves varied greatly between models, but generally indicate that suitability is predicted when 274 

the precipitation in the warmest quarter is high and variation in precipitation seasonality is low 275 

(SFig. 1). Precipitation seasonality was the top contributing environmental factor for predictions 276 

of ticks testing positive for R. montanensis across all methods and was the single most important 277 

variable for MaxEnt (72%), BRT (98%), and RF (25%) models. Precipitation seasonality (99%), 278 

mean annual temperature (63%), temperature seasonality (60%), and precipitation of the 279 
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warmest quarter (51%) were important variables in GLM models; precipitation seasonality 280 

(68%) and precipitation of the warmest quarter (50%) were important variables in GAM models 281 

(STable 2). Low variation in precipitation seasonality was the only common variable response 282 

across models of ticks positive for R. montanensis (SFig. 2). 283 

Applying a conservative threshold for presence (i.e. where probabilities of occurrence 284 

less than 50% were considered unsuitable habitat) highlights where potential D. variabilis habitat 285 

occurs with the greatest probability (Fig. 4). High model predictions for presence of D. variabilis 286 

are predominantly concentrated in the eastern US across methods. Ticks positive for R. 287 

montanensis were predicted in geographically limited areas within the broader range of D. 288 

variabilis in all projected models, with the exception of the BRT model, which did not produce 289 

any probabilities for positive tick occurrences that met the threshold for presence (Fig. 4D). 290 

Restricted geographic distribution of positive ticks within the broader range of D. variabilis was 291 

also predicted in the model ensemble, although these were distinct potential ranges that did not 292 

overlap in areas with high probabilities (Fig. 4F). 293 

  294 
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Fig. 4. Overlap in the predicted geographic distributions (probability of occurrence > 50%) for 295 
D. variabilis ticks and D. variabilis ticks positive for R. montanensis infections. Distributions 296 
were estimated using five common modeling methods including generalized linear model (GLM, 297 
A), generalized additive model (GAM, B), maximum entropy (MaxEnt, C), boosted regression 298 
trees (BRT, D), and random forests (RF, E), and a weighted ensemble of these five methods (F). 299 

 300 
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 301 

Discussion 302 

The potential geographic ranges of D. variabilis produced in this study are largely in 303 

concurrence with maps of potential tick exposure issued by health authorities, where the ticks are 304 

reported to be widely distributed east of the Rocky Mountains, with limited distribution along the 305 

Pacific Coast (CDC 2019b). However, every modeling method, except for BRT, yielded 306 

geographic predictions for occurrence that were limited in area compared to general range maps 307 

for D. variabilis. These restrictions are more pronounced when locations with low probabilities 308 

of occurrence are omitted from mapped results, excluding known areas of occurrence in 309 

southern, midwestern, and Pacific coastal states (Fig. 4). Dermacentor variabilis with confirmed 310 

R. montanensis infections had constrained potential ranges within the broader geographic extent 311 

of D. variabilis. The potential range of positive D. variabilis modeled with a reduced variable set 312 

via MaxEnt in this study mirrors the results presented in St. John et al. (2016), where the highest 313 

probabilities of occurrence for positive ticks were focused in the Northeast and the Midwest, 314 

within the predicted range of D. variabilis that tested negative for R. montanensis. This restricted 315 

spatial pattern of predicted positive tick occurrences was also observed to varying degrees in 316 

models produced with three other methods (GLM, GAM, and RF). 317 

Dermacentor variabilis is a habitat generalist, capable of exploiting a wide range of 318 

environmental conditions and host species (Sonenshine 1993). The bioclimatic variables that 319 

drove suitability predictions varied greatly between models, possibly reflecting the generalist life 320 

history of D. variabilis, and its ability to withstand conditions that would significantly limit other 321 

arthropod vectors. Nevertheless, indicators of seasonality, both in temperature and precipitation, 322 

were typically represented in averaged models, possibly reflecting the phenology of tick 323 
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reproductive cycles. The life history of this vector may also elucidate the observed discrepancies 324 

in overall predicted range for D. variabilis presence versus the subset of pathogen positive tick 325 

occurrences. The restricted range of ticks positive for R. montanensis, within the larger area of 326 

suitable D. variabilis habitat is possibly indicative of an underlying range restriction in host 327 

availability. The hosts involved in zoonotic transmission cycles for R. montanensis are unknown, 328 

as they are with many tick-borne rickettsiae (Parola et al. 2005). Thus, geographic range 329 

constraint of a competent reservoir host, determined by the host’s ecological niche, is a potential 330 

driver of the constrained spatial pattern of pathogen positive ticks observed in this study. 331 

Furthermore, environmental conditions may mediate bacterial replication and transmission 332 

cycles, limiting where arthropod vectors can successfully acquire or transmit new infections 333 

(Galletti et al. 2013). Of note, while we estimated an ‘infected niche’, these ticks tested positive 334 

for the pathogen, but even with this nuanced information available, we do not precisely know if 335 

they were capable of onward transmission.  In the Rocky Mountain wood tick, Dermacentor 336 

andersoni, there is evidence that ticks infected with R. rickettsii have reduced fitness (Niebylski 337 

et al. 1999). However, there are other tick-pathogen relationships that may increase fitness, such 338 

as the blacklegged tick, Ixodes scapularis, and the bacteria Anaplasma phagocytophilum, that 339 

causes the tick to express anti-freeze-like protein to enhance its survival in colder climates 340 

(Neelakanta et al. 2010). If there is an interaction between pathogens and tick fitness, this may 341 

impact the predicted suitable habitat for the infected vector.  342 

Discrepancies in predicted geographic ranges are expected to arise as a result of the 343 

inherent differences in SDM algorithms. While there is considerable overlap in the projected 344 

output across methods in this study, low probabilities of occurrence are abundant throughout 345 

much of the projected ranges. These finding contrast with other published distributions of D. 346 
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variabilis, where MaxEnt models have projected high bioclimatic suitability throughout the 347 

range, particularly in the central and southern United States (James et al. 2015, Minigan et al. 348 

2018, Boorgula et al. 2020). Model results are also subject to differences in data inputs and 349 

limitations of data sampling, such as when the geographic extent of collections is subject to bias. 350 

This study was limited to data associated with a military installation reporting, and thus 351 

contained repeated observations at some locations – a common finding in surveillance 352 

geolocation data.  Spatial thinning of occurrence records addresses potential oversampling of 353 

localities in these data, as many reported bites occurred in the vicinity of reporting military 354 

installations and medical treatment facilities. The thinned data used in model building is an 355 

appropriate representation of the full dataset of tick occurrences collected at clinics across the 356 

study area, where sufficient locations were represented while controlling for repeated 357 

observations (SFig. 3). Nevertheless, this does not address issues of potential under sampling 358 

across the full range of suitable habitats, or across life-stages, which could be underrepresented 359 

in this particular surveillance system. The majority of D. variabilis surveillance data are adult 360 

ticks collected through field sampling or found biting humans. Juvenile life stages of D. 361 

variabilis are rarely collected through standard field sampling methods of flagging or dragging 362 

because they live off-host, in areas that are not sampled, such as rodent burrows (Sonenshine 363 

1993). The bias of using data from sampling methods which collect a majority of adult D. 364 

variabilis, may confound our understanding of predicted D. variabilis ranges and the dynamics 365 

of R. montanensis. More data are needed from all life stages to create better understanding of 366 

tick-rickettsia range distribution. 367 

Interpolated bioclimatic variables are the primary input environmental predictors used 368 

frequently throughout the SDM literature, but they may not fully describe geographically 369 
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limiting factors when modeling generalist tick species. Due to the prevalence of SDM studies 370 

that used BioClim data, we included bioclimatic layers in this study for comparison with other 371 

published models. However, few of these environmental variables independently contributed to 372 

predictions of D. variabilis presence, and those that were identified as underlying drivers for 373 

averaged model output were related to seasonality. When building SDMs for ticks, identification 374 

of better environmental predictors may be necessary, such as those related to soil moisture. 375 

While we included some proxies of soil conditions, they did not appreciably contribute to 376 

estimates for D. variabilis presence. The Normalized Difference Vegetation Index (NDVI), a 377 

quantification of surface vegetation using remote sensing measurements, has been used in other 378 

studies of tick distributions to approximate conditions that may be limiting to questing ticks. 379 

However, the importance of the contribution of NDVI to models in the literature has been mixed. 380 

We therefore suggest that future studies include further exploration of additional geospatial data 381 

layers and tick-host interactions, to better capture the environmental limits to tick and pathogen 382 

positive tick distributions, in order to use SDM approaches effectively. 383 

This study leveraged a unique surveillance dataset to assess differences in geographic 384 

distributions between D. variabilis ticks, and those infected with R. montanensis. We have 385 

consistently demonstrated that presence of a potential vector does not inherently imply presence 386 

of the pathogen, across a range of modeling methods. This has important implications for public 387 

health agencies, which may use SDMs of vectors to infer risk and make management decisions. 388 

Moving forward, future research that uses expanded georeferenced tick surveillance data, with 389 

accompanying seroprevalence screening, will help reconcile our distribution maps with the full 390 

range of D. variabilis in the United States. Additional data points will allow the opportunity to 391 

better assess model performance with independent validation data that control for spatial 392 
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autocorrelation, as the use of holdout data can lead to inflated model accuracy metrics (Bahn and 393 

McGill 2013). Although RF was the best performing modeling algorithm in this study, 394 

methodological choices should be made with specific goals in mind, and we caution against 395 

extrapolating the model performance shown here to other datasets or geographic foci.  396 

Conclusion 397 

There is considerable overlap in the estimated geographic range of D. variabilis across modeling 398 

methods used in this study. Nevertheless, by conserving input data layers across modeling 399 

approaches, we demonstrated that differences in these predictions can arise as an artefact of 400 

methodology. These discrepancies in predicted range may be quite profound in impact and 401 

interpretation, depending on the intended application of results:for example, if these mapped 402 

model outcomes are used for communicating either tick encounter or disease risk at sub-regional 403 

scales. Further, we find that the predicted “infected niche” is smaller than the overall predicted 404 

tick niche, and thus predicted vector distributions may not best reflect human risk of acquiring a 405 

vector-borne disease. We therefore recommend caution in relying on single method SDMs, or 406 

those that imply disease risk from vector niches, to inform public health operations.  407 
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Supplemental Materials 548 

Table S1. Model variable importance with confidence interval limits for models built with all 549 
Dermacentor variabilis ticks. 550 

Method Variable Model 
Importance 

Lower CI 
Limit 

Upper CI 
Limit 

GLM 

Bio 1 0.29 0.26 0.32 
Bio 2 0.04 0.03 0.05 
Bio 4 0.08 0.06 0.10 
Bio 8 0.02 0.01 0.02 
Bio 9 0.01 0.00 0.01 
Bio 15 0.81 0.77 0.84 
Bio 18 0.02 -0.00 0.04 
Bio 19 0.07 0.05 0.09 
OC Dens 0.18 0.16 0.20 
WWP 0.04 0.03 0.05 

GAM 

Bio 1 0.25 0.22 0.29 
Bio 2 0.30 0.27 0.32 
Bio 4 0.22 0.18 0.26 
Bio 8 0.14 0.12 0.15 
Bio 9 0.11 0.09 0.13 
Bio 15 0.17 0.14 0.19 
Bio 18 0.13 0.11 0.16 
Bio 19 0.03 -0.00 0.06 
OC Dens 0.00 -0.00 0.01 
WWP 0.02 0.01 0.04 

MaxEnt 

Bio 1 0.28 0.26 0.30 
Bio 2 0.14 0.12 0.15 
Bio 4 0.06 0.05 0.07 
Bio 8 0.03 0.03 0.03 
Bio 9 0.06 0.05 0.08 
Bio 15 0.07 0.06 0.08 
Bio 18 0.06 0.05 0.07 
Bio 19 0.08 0.06 0.09 
OC Dens 0.01 0.00 0.01 
WWP 0.00 0.00 0.00 

BRT 

Bio 1 0.00 0.00 0.00 
Bio 2 0.00 0.00 0.00 
Bio 4 0.00 0.00 0.00 
Bio 8 0.00 0.00 0.00 
Bio 9 0.00 0.00 0.00 
Bio 15 0.84 0.81 0.87 
Bio 18 0.01 0.00 0.02 
Bio 19 0.01 0.00 0.01 
OC Dens 0.00 0.00 0.00 
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WWP 0.00 0.00 0.00 

RF 

Bio 1 0.05 0.05 0.05 
Bio 2 0.05 0.04 0.05 
Bio 4 0.04 0.04 0.05 
Bio 8 0.02 0.02 0.02 
Bio 9 0.04 0.03 0.04 
Bio 15 0.26 0.24 0.27 
Bio 18 0.03 0.03 0.04 
Bio 19 0.04 0.03 0.04 
OC Dens 0.01 0.00 0.01 
WWP 0.01 0.01 0.01 
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Table S2. Model variable importance with confidence interval limits for models built with the 553 
subset of ticks infected with R. montanensis. 554 

Method Variable Model 
Importance 

Lower CI 
Limit 

Upper CI 
Limit 

GLM 

Bio 1 0.63 0.60 0.66 
Bio 2 0.24 0.20 0.27 
Bio 4 0.60 0.57 0.62 
Bio 8 0.07 0.04 0.10 
Bio 9 0.15 0.10 0.20 
Bio 15 0.99 0.98 0.99 
Bio 18 0.51 0.46 0.56 
Bio 19 0.40 0.35 0.44 
OC Dens 0.05 0.02 0.07 
WWP 0.26 0.21 0.31 

GAM 

Bio 1 0.41 0.25 0.58 
Bio 2 0.28 0.20 0.36 
Bio 4 0.46 0.35 0.57 
Bio 8 0.13 0.02 0.24 
Bio 9 0.22 0.06 0.38 
Bio 15 0.68 0.58 0.77 
Bio 18 0.50 0.39 0.61 
Bio 19 0.26 0.13 0.38 
OC Dens 0.10 0.01 0.18 
WWP 0.17 0.07 0.26 

MaxEnt 

Bio 1 0.37 0.31 0.43 
Bio 2 0.18 0.15 0.21 
Bio 4 0.33 0.29 0.37 
Bio 8 0.02 0.00 0.03 
Bio 9 0.01 0.00 0.02 
Bio 15 0.72 0.69 0.75 
Bio 18 0.27 0.22 0.32 
Bio 19 0.09 0.06 0.11 
OC Dens 0.01 0.00 0.01 
WWP 0.07 0.05 0.09 

BRT 

Bio 1 0.00 0.00 0.00 
Bio 2 0.00 0.00 0.00 
Bio 4 0.00 0.00 0.00 
Bio 8 0.00 0.00 0.00 
Bio 9 0.00 0.00 0.00 
Bio 15 0.98 0.97 0.99 
Bio 18 0.00 0.00 0.00 
Bio 19 0.00 0.00 0.00 
OC Dens 0.00 0.00 0.00 
WWP 0.00 0.00 0.00 
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RF 

Bio 1 0.04 0.03 0.04 
Bio 2 0.05 0.04 0.05 
Bio 4 0.05 0.04 0.05 
Bio 8 0.04 0.04 0.05 
Bio 9 0.02 0.02 0.02 
Bio 15 0.25 0.23 0.27 
Bio 18 0.04 0.03 0.04 
Bio 19 0.04 0.04 0.05 
OC Dens 0.01 0.00 0.01 
WWP 0.03 0.02 0.04 
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Fig. S1. Averaged variable response curves, with 95% confidence intervals, for environmental 557 
variables used to build species distribution models (SDMs) with the full dataset of D. variabilis 558 
occurrences. The variables that influenced the predicted presence of ticks varied between the 559 
modeling methods used, including generalized linear model (GLM), generalized additive model 560 
(GAM), maximum entropy (MaxEnt), boosted regression trees (BRT), and random forests (RF), 561 
and a weighted ensemble of these five methods. 562 
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Fig. S2. Averaged variable response curves, with 95% confidence intervals, for environmental 566 
variables used to build species distribution models (SDMs) with the subset of D. variabilis ticks 567 
infected with R. montanensis. The variables that influenced the predicted presence of infected 568 
ticks varied between the modeling methods used, including generalized linear model (GLM), 569 
generalized additive model (GAM), maximum entropy (MaxEnt), boosted regression trees 570 
(BRT), and random forests (RF), and a weighted ensemble of these five methods. 571 

 572 
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Fig. S3. Abundance of tick occurrence points shown against predicted probability of occurrence 576 
across modeling methods for the full dataset (grey), data with repeated observations at reporting 577 
clinic locations removed (blue), and spatially thinned data used in SDM building (green). All 578 
ticks include all Dermacentor variabilis ticks, and positive ticks are D. variabilis ticks that tested 579 
positive for Rickettsia montanensis infections. 580 
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