Predictive performance of international COVID-19 mortality forecasting models
View ORCID ProfileJoseph Friedman, Patrick Liu, Emmanuela Gakidou, the IHME COVID19 Model Comparison Team
doi: https://doi.org/10.1101/2020.07.13.20151233
Joseph Friedman
1University of California, Los Angeles
Patrick Liu
1University of California, Los Angeles
Emmanuela Gakidou
2Institute for Health Metrics and Evaluation, University of Washington
Data Availability
All data and code for this analysis are available at: https://github.com/pyliu47/covidcompare
Posted July 14, 2020.
Predictive performance of international COVID-19 mortality forecasting models
Joseph Friedman, Patrick Liu, Emmanuela Gakidou, the IHME COVID19 Model Comparison Team
medRxiv 2020.07.13.20151233; doi: https://doi.org/10.1101/2020.07.13.20151233
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (708)
- Anesthesia (201)
- Cardiovascular Medicine (2936)
- Dermatology (249)
- Emergency Medicine (439)
- Epidemiology (12740)
- Forensic Medicine (12)
- Gastroenterology (827)
- Genetic and Genomic Medicine (4579)
- Geriatric Medicine (417)
- Health Economics (729)
- Health Informatics (2914)
- Health Policy (1069)
- Hematology (388)
- HIV/AIDS (924)
- Medical Education (425)
- Medical Ethics (115)
- Nephrology (468)
- Neurology (4346)
- Nursing (236)
- Nutrition (638)
- Oncology (2268)
- Ophthalmology (645)
- Orthopedics (258)
- Otolaryngology (324)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (501)
- Pediatrics (1196)
- Primary Care Research (495)
- Public and Global Health (6932)
- Radiology and Imaging (1527)
- Respiratory Medicine (915)
- Rheumatology (437)
- Sports Medicine (385)
- Surgery (487)
- Toxicology (60)
- Transplantation (210)
- Urology (180)