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Abstract 

Forecasting models have provided timely and critical information about the course of the COVID-19 

pandemic, predicting both the timing of peak mortality, and the total magnitude of mortality, which can 

guide health system response and resource allocation1–4. Out-of-sample predictive validation—checking 

how well past versions of forecasting models predict subsequently observed trends—provides insight 

into future model performance5. As data and models are updated regularly, a publicly available, 

transparent, and reproducible framework is needed to evaluate them in an ongoing manner. We 

reviewed 384 published and unpublished COVID-19 forecasting models, and evaluated seven models for 

which publicly available, multi-country, and date-versioned mortality estimates could be downloaded6–

10. These included those modeled by: DELPHI-MIT (Delphi), Youyang Gu (YYG), the Los Alamos National 

Laboratory (LANL), Imperial College London (Imperial), and three models produced by the Institute for 

Health Metrics and Evaluation (IHME), a curve fit model (IHME-CF), a hybrid curve fit and 

epidemiological compartment model (IHME-CF SEIR), and a hybrid mortality spline and epidemiological 

compartment model (IHME – MS SEIR). Collectively models covered 171 countries, as well as the 50 

states of the United States, and Washington, D.C., and accounted for >99% of all reported COVID-19 

deaths on July 11th, 2020. As expected, errors in mortality predictions increased with a larger number of 

weeks of extrapolation. For the most recent models, released in June, at four weeks of forecasting the 

best performing model was the IHME-MS SEIR model, with a cumulative median absolute percent error 

of 6.4%, followed by YYG (6.5%) and LANL (8.0%). Looking across models, errors in cumulative mortality 

predictions were highest in sub-Saharan Africa and lowest in high-income countries, reflecting 

differences in data availability and prediction difficulty in earlier vs. later stages of the epidemic. For 

peak timing prediction, among models released in April, median absolute error values at six weeks 

ranged from 23 days for the IHME-CF model to 36 days for the YYG model. In sum, we provide a publicly 

available dataset and evaluation framework for assessing the predictive validity of COVID-19 mortality 

forecasts. We find substantial variation in predictive performance between models, and note large 

differences in average predictive validity between regions, highlighting priority areas for further study in 

sub-Saharan Africa and other emerging-epidemic contexts. 
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Main 

As the COVID-19 pandemic has spread across the globe, policymakers and hospital systems have relied 

on forecasting models predicting mortality to drive real-time policy change and resource allocation. 

These models have proven to be controversial—iteratively championed for providing essential 

information, and criticized for providing incorrect predictions in the midst of an evolving, high-stakes 

public health situation11–15. Nevertheless, many assessments of COVID-19 forecasting model 

performance have relied on a small selection of examples—such as a single iteration of a forecasting 

model that is updated daily, or estimates for a single country from a global model—to assess predictive 

validity. A comprehensive approach, including all estimated timeseries and all iterations of each model, 

is needed to provide additional perspective on overall model performance. 

Although more systematic comparisons have been conducted for models describing the epidemic in the 

United States7,16–18, similar analyses have not been undertaken elsewhere, despite the global impact of 

COVID-19. A critical review of each model and its out-of-sample predictive performance is therefore 

urgently needed, to provide insight into which models may be most helpful in planning for upcoming 

phases of the pandemic. This may be of particular importance as forecasting models increasingly seek to 

leverage observed trends in places with established epidemics, such as the United States or Europe, to 

predict future trends in places with emerging epidemics. 

A global framework for COVID-19 mortality forecast comparisons 

In order to conduct a systematic comparison of the out-of-sample predictive validity of international 

COVID-19 forecasting models, a number of issues must be addressed. Looking across models, a high 

degree of heterogeneity can be observed in numerous dimensions, including sources of input data, 

frequency of public releases of model estimates, geographies included in the results, and how far into 

the future predictions are made available for. Differences in each of these areas must be taken into 

account to provide a fair and relevant comparison. 

Input data: A number of sources of input data—describing observed epidemiological trends in COVID-

19—exist, and they often do not agree for a given country and time point19–21. We chose to use mortality 

data collected by the Johns Hopkins University Coronavirus Resource Center as the in-sample data 

against which forecasts were validated at the national level, and data from the New York Times for 

state-level data for the United States20. However, we adjusted for differences in model input data using 

intercept shifts, whereby all models where shifted to perfectly match the in-sample data for the date in 

which the model was released (see methods). This avoids unfairly penalizing models using a different 

input data set. It is important to note, however, that some known issues do exist with each of these data 

sources, which have led some groups evaluated here to use a mix of these data and country-specific 

data that are made available through ministries of health and national and local statistical offices.  

Frequency of public releases of model estimates: Most forecasting models are updated regularly, but at 

different intervals, and on different days. Specific days of the week have been associated with a greater 

number of reported daily deaths. Therefore, previous model comparison efforts in the United States—

such as those conducted by the US Centers for Disease Control and Prevention—have required modelers 

to produce estimates using input data cutoffs from a specific day of the week22. For the sake of including 

all publicly available modeled estimates, we took a more inclusive approach, considering each publicly 
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released iteration of each model. To minimize the effect of day-to-day fluctuations in death reporting, 

we focus on errors in cumulative and weekly total mortality, which are less sensitive to daily variation. 

Geographies and time periods included in the results: Each model produces estimates for a different set 

of national and subnational locations, and extrapolates a variable amount of time from the present. 

Each model was also first released on a different date, and therefore reflects a different window of the 

pandemic. Here, we also took an inclusive approach, and included estimates from all possible locations 

and time periods. To increase comparability, we stratified summary error statistics by region, weeks of 

extrapolation, and month of estimation, and masked summaries reflecting a small number of locations 

or time points. Estimates were included at the national level for all countries, except the United States, 

where they were included at the admin-1 (state) level, as they were available for most models. In order 

to be considered for inclusion, models were required to forecast at least four weeks into the future.  

Outcomes: Finally, each model also includes different estimated quantities, including daily and 

cumulative mortality, number of observed or true underlying cases, and various dimensions of hospital 

resource utilization. We focus here on mortality, as it was the most widely reported outcome, and it also 

has a high degree of societal, epidemiological and public health importance. 

We reviewed 383 published and unpublished COVID-19 forecasting models (see supplemental file). We 

excluded models from consideration that did not 1) produce estimates for at least five different 

countries, 2) did not extrapolate at least four weeks out from the time of estimation, 3) did not estimate 

mortality, 4) did not provide downloadable, publicly available results, or 5) did not provide date-

versioned sets of previously estimated forecasts, which are required to calculate subsequent out-of-

sample predictive validity. Seven models which fit all inclusion criteria were evaluated (Table 1). These 

included those modeled by: DELPHI-MIT (Delphi)10, Youyang Gu (YYG)7, the Los Alamos National 

Laboratory (LANL)9, Imperial College London (Imperial)8, and three models produced by the Institute for 

Health Metrics and Evaluation (IHME)6. Beginning March 25th, IHME initially produced COVID forecasts 

using a statistical curve fit model (IHME-CF), which was used through April 29th for publicly released 

forecasts1. On May 4th, IHME switched to using a hybrid model, drawing on a statistical curve fit first 

stage, followed a second-stage epidemiolocal model with susceptible, exposed, infectious, recovered 

compartments (SEIR)23. This model—referred to herein as the IHME-CF SEIR model—was used through 

May 26th. On May 29th, the curve fit stage was replaced by a spline fit to the relationship between log 

cumulative deaths and log cumulative cases, while the second stage SEIR model remained the same24. 

This model, referred to as the IHME-MS SEIR model, was still in use at the time of this publication. The 

three IHME models rely upon fundamentally different assumptions and core methodologies, and 

therefore are considered separately. They were also released during different windows of the pandemic, 

and are therefore compared in subsequent sections to models released during similar time periods. 

In some cases, numerous scenarios were produced by modelling groups, to describe the potential 

effects of interventions, or future trajectories under different assumptions. In each case the baseline or 

status quo scenario was selected to evaluate model performance as that represents the modelers’ best 

estimate about the most probable course of the pandemic. 

Assessing the magnitude of deaths 

The total magnitude of COVID-19 deaths is a key measure for monitoring the progression of the 

pandemic. It represents the most commonly produced outcome of COVID-19 forecasting models, and 
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perhaps the most widely debated measure of performance. The evaluation framework we developed for 

assessing how well models predicted the total number of cumulative deaths is shown in Figure 1 for an 

example country—the United States—and similar figures for all locations included in the study can be 

found in the supplement. Out-of-sample errors in predicted total cumulative number of deaths were 

calculated for each model globally by number of weeks of model extrapolation, month of estimation and 

each super-region used in the Global Burden of Disease Study25 (Figure 2). In the main text we focus on 

errors in total cumulative deaths—as opposed to other metrics such as weekly or daily deaths—as it has 

been most commonly discussed measure, to-date, in academic and popular press critiques of COVID-19 

forecasting models. Nevertheless, alternate measures are presented in the extended data figures and 

online framework. Errors were assessed for systematic upward or downward bias (Extended Data Figure 

1), and errors for weekly, rather than cumulative deaths, were also assessed (Extended Data Figure 2). In 

calculating summary statistics, we used percent errors to control for the large differences in the scale of 

the epidemic between locations. We calculated medians, rather than means, due to a small number of 

large magnitude outliers present in a few time-series. Errors from all models were pooled to calculate 

overall summary statistics, in order to comment on overarching trends by geography and time.  

As expected, errors in cumulative mortality predictions increased with a larger number of weeks of 

extrapolation (Figure 2). For example, pooling errors across models released in May, the median 

absolute percent error (MAPE) rose from 3.8% at one week of extrapolation to 14.5% at six weeks, and 

similar patterns were observed across the study period. Decreases in predictive ability with 

extrapolation were similarly noted for errors in weekly deaths (Extended Data Figure 2). Model 

performance in predicting total cumulative deaths also improved over time, which is to be expected, 

given the reduced difficulty in predicting the overall scope of an epidemic which has stabilized. Pooling 

across models, the MAPE at four weeks of extrapolation was 10.2% in June, as compared to 13.6% in 

May, 25.1% in April, and 94.9% in March. No corresponding improvement over time, however, was seen 

when examining weekly errors, with a MAPE at 4 weeks of 67.0%, 62.5%, and 65.1% for June, May, and 

April, respectively. We can therefore conclude that although modelling the cumulative death toll of 

COVID-19 has become progressively easier over the course of the pandemic, models have made less 

progress in improving predictions of the level of upcoming deaths occurring each week, an objectively 

more difficult task. 

For models released in June, at four weeks of forecasting, the best performing model was the IHME-MS 

SEIR model, with a cumulative MAPE of 6.4%, followed by YYG (6.5%) and LANL (8.0%). For models 

released in May, assessed at six weeks of extrapolation, the IHME-CF SEIR model had a MAPE for 

cumulative deaths of 11.6%, followed by YYG (13.1%), and LANL (14.0%). For models released in April, at 

six weeks of extrapolation, the best performance was observed for the LANL model with a MAPE of 

26.5%, followed by YYG at 26.7%, and the Delphi model at 29.3%. 

In April, most forecasting models were largely unbiased in their short-term forecasts, with median 

percent error (MPE) values at one week of extrapolation ranging from -5.5% for LANL to +10.1% for 

Imperial, with a pooled MPE of +0.6%. By six weeks of extrapolation, however, models produced in April 

proved to be overly optimistic, with a pooled MPE of -10.0%. In contrast, by June, models had become 

relatively unbiased in longer-term forecasts, with a pooled MPE at 4 weeks of extrapolation of -0.1%. A 

notable exception was the Imperial model, which had an MPE of +2,164.8% at six weeks for models 

released in April, and an MPE of +105.5% at four weeks for models released in June (see the Supplement 

for a location-specific visualization of all time-series and errors). 
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Looking across models, errors in cumulative mortality predictions were generally highest in sub-Saharan 

Africa, with a pooled-error MAPE of 42.3% at four weeks for models released in June, and 34.7% at six 

weeks for models released in May, compared to 4.8% and 11.2% respectively for countries in the high-

income region, which generally had the lowest MAPE values. These systematic regional differences likely 

reflect both differences in data availability and a different level of prediction difficulty in earlier vs. later 

stages of each country’s epidemic. Similar disparities were also seen between regions when examining 

errors in weekly deaths, and so regional gaps are unlikely to reflect the stage of the epidemic alone. 

Assessing the timing of peak mortality 

We also assessed how well each model predicted the timing of peak daily deaths—an additional aspect 

of COVID-19 epidemiology with acute relevance for resource planning. Peak timing may be better 

predicted by different models than those best at forecasting the magnitude of mortality, and therefore 

deserves separate consideration as an outcome of predictive performance. In order to assess peak 

timing predictive performance, we first calculated the observed peak of daily deaths in each location—a 

task complicated by the highly volatile nature of reported daily deaths values. We therefore smoothed 

each timeseries of daily deaths, and subsequently calculated the date of the peak observed in each 

location, as well as the predicted peak for each iteration of each forecasting model (see the methods 

section). We used various “smoothers” to accomplish this task (see Extended Data Figure 5 and methods 

section), but present results calculated using a LOESS smoother in the main text (Figures 3 and 4), as it 

was found to be the most robust to daily fluctuations. Results shown here reflect only those locations 

for which the peak of the epidemic had passed at the time of publication, and for which at least one set 

of model results was available seven days or more ahead of the peak date. We stratified predictive 

validity statistics by the number of weeks in advance of the observed peak that the model was released, 

as well as the month in which the model was released. There was insufficient geographic variation to 

stratify results by regional groupings, although that remains an important topic for further study, which 

will become feasible as the pandemic peaks in a greater number of countries globally. 

As expected, forecasting models tended to improve at predicting peak timing as they got closer to the 

observed peak date in each location. For example, among estimates that were released in April, one 

week (7 to 13 days) ahead of an observed peak, models showed a median absolute error (MAE) of seven 

days, which increased to 28 days for models released six weeks in advance (Figure 4). 

Unlike the predictive performance observed for the magnitude of mortality, models were not observed 

to improve greatly in their ability to predict peak timing out-of-sample over time. The only model 

available in March, the IHME-CF model, had an MAE of 16 days for models released in that month, at six 

weeks in advance of a peak. Pooling across models, estimates had an MAE of 28 days at six weeks in 

April, and 20 days at six weeks in May. Among models released in April, MAE values at six weeks ranged 

from 23 days for the IHME-CF model to 36 days for the YYG model. For models from May, MAE values at 

six weeks ranged from 24 for the Delphi model, to 37 for the LANL model. For models released in June, 

MAE values at 3 weeks ranged from 13 for the LANL model to 36 for the YYG model. 

Models generally were biased towards premature peak prediction, reflected in negative median error 

(ME) values for most models and estimation months, regardless of lead time. For example, pooling 

across models, a ME of -16 days, -28 days, and -18 days was observed at six weeks for March, April, and 

June respectively. Peak timing assessment was only available up to four weeks in advance for models 
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released during the month of June, however a distinct trend emerged, where positive median errors 

were noted. This seems to reflect a number of locations where true peaks where observed in June, 

although models predicted peaks would not be seen until later in the summer or fall. 

Among models released in April, the IHME-CF model had the lowest error at six weeks prior to the peak, 

with an MAE of 23 days. It was followed by the Delphi model with an MAE of 28 days, and the LANL 

model with an MAE of 30 days. For models released in April at two weeks of forecasting, the Delphi 

model had the best performance with an MAE of nine days, followed by IHME-CF (10), YYG (13), and 

LANL (16).  

Selecting models to monitor emerging challenges in COVID-19 

In this analysis we provide a publicly available dataset and evaluation framework for assessing the 

predictive validity of COVID-19 mortality forecasts. For many countries, especially those well past the 

peak of their epidemic, forecasts have largely converged. Nevertheless, we find substantial variation in 

historical predictive performance between models. This variation may be helpful in assessing probable 

future performance, especially in emerging epidemics in Latin America, sub-Saharan Africa, and North 

Africa and the Middle East, which have not yet peaked. Although model performance has generally 

improved over time, considerable challenges remain. We note large differences in average performance 

between regions, highlighting priority areas for further study in sub-Saharan Africa and other emerging-

epidemic contexts. 

We also note that the vast majority of models did not provide sufficient information to be included in 

this framework, given that publicly available and date-version forecasts were not made available. We 

would encourage all research groups forecasting COVID-19 mortality to consider providing historical 

versions of their models in a public platform for all locations, to facilitate ongoing model comparisons. 

This will improve reproducibility, the speed of development of the modelling science and the ability of 

policy makers to discriminate between the burgeoning number of models26. 

Our analysis does have limitations that should be considered. Death reporting mechanisms have evolved 

over time, and these shifts represent a source of error that is difficult to control for, and will affect all 

models. Additionally, each modeling group uses a different set of input data. In this analysis we have 

selected data from the Johns Hopkins Coronavirus Resource Center as the in-sample standard, because 

they are publicly available, and released daily, and are widely used by modelers. Nevertheless, they do 

have known issues, which has led other groups, including IHME, to include additional sources of data for 

specific locations. Updating this framework to include a wider array of in-sample data is an important 

area for future study.  

When taking an inclusive approach to including forecasts from various modelling groups, including 

estimates from a wide range of time periods and geographies, extra care must be taken to ensure 

comparability between models. We use various techniques to construct fair companions, such as 

stratifying by region, month of estimation, and weeks of forecasting, and masking summary statistics 

representing a small number of values. Nevertheless, other researchers may prefer distinct methods of 

maximizing comparability over a complex and patchy estimate space. Furthermore, the domains we 

assess—magnitude of total mortality and peak timing—are not an exhaustive list of all possible 

dimensions of model performance. By providing an open-access framework to compile forecasts and 

calculate errors, we hope that other researchers can build on our results to provide additional analyses.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.20151233doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20151233
http://creativecommons.org/licenses/by/4.0/


Ultimately, policymakers would benefit from considering a multitude of forecasting models as they 

consider resource planning decisions related to the response to the COVID-19 pandemic. We provide a 

publicly available framework and codebase, which will be updated in an ongoing fashion, to continue to 

monitor model predictions in a timely fashion, and contextualize them with prior predictive 

performance. It is our hope that this spurs conversation and cooperation amongst researchers, which 

might lead to more accurate predictions, and ultimately aid in the collective response to COVID-19. 
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Tables and Figures 

 

  

Model Data Access Model Type Geographies Range 

IHME - CurveFit http://www.healthdata.org/covid/data-downloads Statistical Curve Fit 34 Countries* August 4th  

IHME - CF SEIR http://www.healthdata.org/covid/data-downloads Curve fit + SEIR 54 Countries* August 4th  

IHME – MS SEIR http://www.healthdata.org/covid/data-downloads Mortality Spline + SEIR 158 Countries* November 1st 
 Youyang Gu https://github.com/youyanggu/covid19_projections SEIR 76 Countries* November 1st 

MIT - DELPHI https://github.com/COVIDAnalytics/DELPHI SEIR 154 Countries* October 15th  

Imperial-LMIC https://github.com/mrc-ide/global-lmic-reports SEIR 109 Countries October 4th  

LANL-Growthrate https://covid-19.bsvgateway.org/ Dynamic Growth 131 Countries* August 25th  

Table 1. Models Included in the Study 

All seven models included in the study are shown. The full list of models assessed for inclusion is shown in the supplemental review file. 

*Includes state-level estimates for the United States 

 

Figure 2. Predictive Validity of Cumulative Mortality 

Median absolute percent error values were calculated 

across all observed errors at weekly intervals, and by 

month of estimation, for each model. Values that 

represent fewer than five locations for a given super-

region and forecasting week are masked due to small 

sample size. 

 

Figure 1. Cumulative Mortality Forecasts and Prediction Errors by Model – Example for United States 

The most recent version of each model is shown on the top left. The middle row shows all iterations of each model as separate 

lines, with the intensity of color indicating model date (darker models are more recent). The vertical dashed lines indicate the first 

and last model release date for each model. The bottom row shows all errors calculated at weekly intervals from one to six weeks. 

The top right panel summarizes all observed errors, using median error and median absolute error, by weeks of forecasting, and 

month of model estimation. Errors incorporate an intercept shift to account for differences in each model’s input data. Values are 

shown for the United States, and similar graphs for all other locations are available in the supplement. 
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Figure 2. Median Absolute Percent Error for Total Cumulative Errors by Super Region, Month of Estimation, and Weeks of Extrapolation 

Median absolute percent error values were calculated across all observed errors at weekly intervals, for each model, by month of 

estimation, weeks of forecasting, and super regional grouping used in the Global Burden of Disease Study. Values that represent fewer than 

five locations are masked due to small sample size. Pooled summary statistics reflect values calculated across all errors from all models, in 

order to comment on aggregate trends by time or geography.  
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Figure 3. Observed vs Predicted Peak in Daily Deaths– Example for Massachusetts 

Observed daily deaths, smoothed using a loess smoother, are shown as black-outlined dots (top). The observed peak in daily deaths is 

shown with a vertical black line (bottom). Each model version that was released at least one week prior to the observed peak is plotted 

(top) and its estimated peak is shown with a point (top and bottom). Estimated peaks are shown in the bottom panel with respect to 

their predicted peak date (x-axis) and model date (y-axis). Values are shown for the Massachusetts, and similar graphs for all other 

locations are available in the supplement. 
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Figure 4. Predictive Validity of Peak Timing  

Median absolute error in days is shown by model, number of 

weeks of forecasting, and month of estimation. Models that 

are not available for at least 20 peak timing predictions are 

not shown. Errors only reflect models released at least seven 

days before the observed peak in daily mortality. One week 

of forecasting refers to errors occurring from seven to 13 

days in advance of the observed peak, while two weeks 

refers to those occurring from 14 to 20 days prior, and so on, 

up to six weeks, which refers to 42-48 days prior. 
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Methods 

In order to construct a framework to compare the out-of-sample predictive performance of COVID-19 

mortality forecasting models, we conducted a comprehensive review of published and unpublished 

papers and models related to COVID forecasting. We identified models with date-versioned, publicly 

available mortality estimates for multiple countries, and create a code base to automatically download 

and process them into a common framework, as models update daily. We calculated errors for both the 

magnitude of mortality, and the timing of peak daily mortality. Finally, we calculated summary statistics 

describing the errors over a number of dimensions, including region, weeks of extrapolation, and month 

of estimation. 

Comprehensive Review and Data Compilation 

Conducting a comprehensive review of COVID-19 mortality forecasting is complicated by the 

unpublished nature of many models. In general, the pace of COVID-19 research has been rapid, to 

provide up-to-date evidence for an evolving situation. We therefore draw on both traditional and non-

traditional sources to find models. We used PubMed to identify models published in journal articles, 

medRxiv to identify models published in preprint articles, and a collection of models curated by the 

Reich Lab and the US Centers for Disease Control describing forecasts for the United States, many of 

which also produce estimates internationally16. In PubMed and medRxiv we selected any articles with 

the terms “COVID”, or “Coronavirus” present, as well as one of either term “Project” or “Forecast”. At 

the time of publication of this article, n=686 articles had been screened. The systematic review 

framework was created to automatically download new citations for review, and subsequently be 

updated in a prospective manner, to stay current on future forecasting model efforts. 

Each article or model was screened for 5 inclusion criteria: 

1) Including a forecasting component (n=383), 

2) and making projections for at least five locations (n=59), 

3) and making projections for COVID-19 mortality (n=39), 

4) and making projections at least four weeks into the future (n=35), 

5) and providing publicly available, date-versioned estimates (n=7). 
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The seven models which fit these criteria are described in the main text (Table 1). All screened articles, 

including their inclusion and exclusion criteria, are described in the review supplemental file. The code 

used to compile candidate models and articles, and conduct the systematic review, is presented along 

with the remainder of the codebase. 

For the seven models that were determined to meet all inclusion criteria, a codebase was developed to 

automatically download each date-versioned set of estimates as they became available. The model date 

(or estimation date) was assigned as the date on which the estimated became publicly available. 

Locations were mapped onto the location hierarchy used by the Global Burden of Disease Study (GBD)27 

that categorizes all countries into regions, and regions into super-regions. When estimates were 

available at multiple geographic levels, the admin-0 (national) level results were used in all cases, except 

the United States, where both admin 0 and admin-1 (state) level results were used.  

For models that provided only daily deaths, cumulative deaths were calculated as a rolling sum. 

Similarly, for models that provided only cumulative deaths, daily deaths were calculating by taking the 

daily first difference of cumulative deaths. 

We chose to use mortality data collected by Johns Hopkins University Coronavirus Resource Center as 

the in-sample data against which forecasts were validated at the national level, and data from the New 

York Times for state-level data for the United States20. Data from both providers were mapped onto the 

GBD location hierarchy. For all analyses, the most recent set of input data were used, reflecting any 

potential revisions of historical trends. 

Mortality Magnitude Predictive Validity 

Before out-of-sample errors could be assessed for COVID-19 mortality, differences in input data sources 

between models were investigated and controlled. Estimates for the same locations, from different 

models, can differ greatly in magnitude of estimated mortality when they use input data sources that 

use different methodologies. To create a fair comparison, before errors were calculated, each model-, 

model-date-, and location-specific timeseries was shifted to match the “true” in-sample data for that 

model’s date of release. This was accomplished by calculating the timeseries-specific difference on the 

model date, and apply it to the entire timeseries as a fixed intercept shift. Subsequent forecasting errors 

were calculated using the resulting shifted time-series.  

Out-of-sample errors were calculated for each timeseries at weekly intervals, beginning at one week, 

through six weeks of extrapolation.  Summary statistics were first calculated across model-runs for each 

location, for use in country-specific graphics (Figure 1, for example). Summary statistics included the 

median absolute error, a measure of accuracy, and median error, a measure of bias. These were 

calculated separately by model, and by weeks of extrapolation. 

Subsequently, errors were summarized between countries. Summary statistics included the median 

absolute percent error, a measure of accuracy, and median percent error, a measure of bias. Relative 

error statistics were used for all inter-country comparisons, to account for the substantial differences in 

magnitude of deaths between locations. Summary statistics were calculated in a stratified manner by 

regional groupings from the GBD27, as well as weeks of extrapolation, and month of estimation. Pooled 

summary statistics were also calculated across models, to provide context about commonalities in 

trends in predictive performance over time and geographies. 
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Peak Timing 

In order to calculate out-of-sample predictive validity statistics on how well each model predicted the 

timing of peak daily deaths, we smoothed daily death data, which are highly stochastic, applied an 

algorithm to detect peaks in both observed data and forecasted model estimates, and calculated errors 

in the difference in number of days between the observed and estimated peaks. 

First, observed daily death data were smoothed to provide stable time-series that could be used for 

local maxima detection. We used various smoothers to accomplish this task, including a LOESS smoother 

with a span of 0.33, run separately for each location-specific timeseries, a 7-day rolling average, and a 3-

day rolling average applied tenfold to the same timeseries. We chose to present results calculated using 

the LOESS smoother in the main text, as it was found to be the most robust method to daily stochasticity 

that could introduce false peaks. Although most models produced smooth timeseries of daily deaths, 

some also demonstrated stochasticity, and so all forecasted daily death timeseries were also smoothed 

with a LOESS smoother. 

Peaks in smoothed, observed daily deaths were calculated according to the following algorithm. A peak 

was defined as: 

1) a local maximum p in the timeseries at time t, 

2) where no other point exists in the next 21 days (t through t+21) that exceeds the p by more than 

20%, 

3) t does not fall within the last seven days of the timeseries, 

4) where p represents at least 5 deaths per day, 

5) and if multiple such points p exist that meet the above criteria, then the first value will be 

selected. 

Peaks in forecasted trends were also identified with the same algorithm. For a time-series in which no 

peak was identified using the above algorithm, for a location which did have a peak in observed data, 

the global maximum value was used. This captured errors among models that failed to ever predict a 

peak, despite a true peak being observed. Errors for locations with a true peak in observed data, for the 

model runs in which the model date was at least seven days prior to the true detected peak. Errors were 

defined as the difference between the date of the true peak and the estimated peak from each 

forecasting model, in days. Summary statistics included the median absolute error in days, as a measure 

of accuracy, and the median error in days as a measure of bias. Errors were stratified by model, and 

weeks of extrapolation, which was defined as:  

𝑊𝑒𝑒𝑘𝑠 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑓𝑙𝑜𝑜𝑟((𝑝𝑒𝑎𝑘 𝑑𝑎𝑡𝑒 − 𝑚𝑜𝑑𝑒𝑙_𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑑𝑎𝑡𝑒)/7)  

Summary statistics were masked for models that were not released in time to produce peak timing 

estimates for at least 20 total locations. Due to limited regional coverage it was not possible to stratify 

results by geography. This will likely become feasible as more locations pass their peak of daily mortality.  
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Code Availability 

All code used for these analyses is publicly available at: 

https://github.com/pyliu47/covidcompare. 

Data Availability 

All data used for these analyses are publicly available at: 

https://github.com/pyliu47/covidcompare. 
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Extended Data Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extended Data Figure 1. Bias in Cumulative Mortality Predictions  

Median percent error values, a measure of bias, were calculated across all observed errors at weekly intervals, for each model, by month of 

estimation, weeks of forecasting, and super regional grouping used in the Global Burden of Disease Study. Values that represent fewer than 

five locations are masked due to small sample size. 
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Extended Data Figure 2. Predictive Validity of Weekly Mortality - Median Absolute Percent Error 

Median absolute percent error values were calculated for weekly mortality rates across all observed errors at weekly intervals, for each 

model, by month of estimation, weeks of forecasting, and super regional grouping used in the Global Burden of Disease Study. Values that 

represent fewer than 5 locations are masked due to small sample size. 
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Extended Data Figure 3. Bias in Peak Timing by Month of Estimation 

Median error in days are shown by model, weeks of forecasting, and 

estimation month.  Values that represent fewer than ten errors for a given 

model and forecasting-week are not shown. Errors only reflect models 

released at least seven days before the observed peak in daily mortality. 
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Extended Data Figure 4. Smoothing Method – Example for nine Countries  

Daily deaths are shown for nine locations, as well as three methods used to smooth them prior to peak date 

calculation. Calculated peaks from each method are shown with dashed vertical lines. Smoothing method is shown 

by color. Graphs for all locations are shown in the supplement. 
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Extended Data Figure 5. Cumulative Mortality Forecasts and Prediction Errors by Model – Example for Brazil 
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Extended Data Figure 6. Cumulative Mortality Forecasts and Prediction Errors by Model – Example for United Kingdom 
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Extended Data Figure 7. Cumulative Mortality Forecasts and Prediction Errors by Model – Example for India 
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Extended Data Figure 8. Cumulative Mortality Forecasts and Prediction Errors by Model – Example for Mexico 
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Extended Data Figure 9. Cumulative Mortality Forecasts and Prediction Errors by Model – Example for Massachusetts 
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Extended Data Figure 10. Cumulative Mortality Forecasts and Prediction Errors by Model – Example for Russian Federation 
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