Abstract
Modeling the evolution of Covid-19 incidence rate is critical to deciding and assessing non-medical intervention strategies that can lead to successful containment of the pandemic. This research presents a mathematical model to empirically assess measures related to various pandemic containment strategies, their similarities and a probabilistic estimate on the evolution of Covid-19 incidence rates. The model is built on the principle that, the exponential rise and decay of the number of confirmed Covid-19 infections can be construed as a set of concurrent non-linear waves. These waves can be characterized by a linear combination of Gaussian and Cauchy Lorentz functions collectively termed as Gaussian-Lorentzian Composite (GLC) function. The GLC function is used for non-linear approximation of officially confirmed Covid-19 incidence rates in each country. Results of fitting GLC based models to incidence rate trends of 20 different countries proves that the models can empirically explain the growth and decay trajectory Covid-19 infections in a given population.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None. No funding to declare.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB/oversight body is exempted.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.