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Abstract

Modeling the evolution of Covid-19 incidence rate is critical to deciding and assessing non-medical intervention
strategies that can lead to successful containment of the pandemic. This research presents a mathematical
model to empirically assess measures related to various pandemic containment strategies, their similarities
and a probabilistic estimate on the evolution of Covid-19 incidence rates. The model is built on the principle
that, the exponential rise and decay of the number of confirmed Covid-19 infections can be construed as a set
of concurrent non-linear waves. These waves can be characterized by a linear combination of Gaussian and
Cauchy Lorentz functions collectively termed as Gaussian-Lorentzian Composite (GLC) function. The GLC
function is used for non-linear approximation of officially confirmed Covid-19 incidence rates in each country.
Results of fitting GLC based models to incidence rate trends of 20 different countries proves that the models can
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empirically explain the growth and decay trajectory Covid-19 infections in a given population.
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The World Health Organization declared Covid-19 out-
break as a global pandemic on March 11, 2020 [1]. Since
then, a number of Covid-19 epidemic spread models were
developed using data officially reported by countries across
the globe. It is well known that current data on Covid-19 con-
firmed infections does not reflect the true scale of spread of
the pandemic. However, a wide variety of forecasting models
have been developed based on SIR deterministic framework
and its variants given their historic significance in epidemic
modeling [2, 3, 4, 5, 6].

One of the most fundamental metric used by the various
SIR based deterministic frameworks is the basic reproduc-
tion number, Ry which is used to quantify the threshold of
an epidemic outbreak. The Ry number defined as expected
number of secondary cases that can be produced by a single
infected individual in a completely susceptible population, is
estimated based on assumptions on transmissibility, contact
dynamics and expected duration of infection. The calculation,
usage and interpretation of Ry in a model may lead to flaws
unless the model explicity defines the base assumptions, lim-
itations and source of information [7]. Several studies have
highlighted key challenges for epidemic modeling when us-
ing deterministic, stochastic and network based methods that
requires estimation of Ry to be able to forecast the evolution
of the epidemic spread [8, 9, 10, 11]. A wide spectrum of fac-

tors such as Genetic diversity, Population Immunity, Mobility
Pattern, Social contact dynamics, Spatial structures, Pathogen
mutation and evolution, Exposure time to pathogen, Viral load,
Super spreaders, Seasonality and Endemicity introduce large
scale uncertainties. It is near impossible to collect enough and
qualitative data regarding each of the forementioned factors
and develop a generic model, factoring in all uncertainties and
make a forecast on epidemic spread.

In search for a simple generic epidemic model, there
have been studies published on using empirical mathemat-
ical functions for characterizing the spread of an epidemic
based on the trajectory of its curve. An inverted parabola func-
tion was used to approximate single-wave epidemic outbreaks
based on cumulative number of incidence rates [12]. The
inverted parabola model was tested on nine different epidemic
outbreaks across various geographies that include Chikun-
gunya, Ebola, Salmonella SaintPaul, Gastroenteritis, Pertussis
to forecast future cumulative number incidences. Another
approach leveraged a sub-epidemic wave model that consid-
ers the trajectory of an epidemic, its peaks and the variations
in its oscillations to make a short term forecast [13]. The
sub-epidemic wave model was based on a generalized logistic
growth model (GLM) function based on the study [14] that
was originally applied to outbreak data on SARS in Singapore,
Plague in Madagascar and Ebola in the Democratic Repub-
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lic of Congo. The sub-epidemic wave model was shown to
perform well for short term forecasts of two to three weeks
and when the incidence pattern was stable. However, when
there was significant increase in incidence rate the model was
unable to capture the pattern within certain components of
sub-epidemic waves. Considering the current Covid-19 pan-
demic, the scale of testing across a given population and the
reporting delays of incidence rates introduce substantial un-
certainty. These complexities along with varying non-medical
interventions and policies by different Government organiza-
tions at both the provincial and federal levels, makes it almost
impossible to gauge the exact number of infections existing
in a populations leading to a highly non-linear time varying
pandemic wave.

Acknowledging the best attempts made by various studies
in decoding the trajectory of the Covid-19 pandemic, there is
still a need for a method that has less complexity, encode the
wide variety of uncertainties that influcence incidence rates
and can be generically applied to data across any geograph-
ical region. Most importantly, the method should be able to
account for high variations of officially reported incidence
rates and untested asymptomatic population considering a
potentially endemic characteristic of Covid-19. This paper
presents a mathematical function that can model the current
Covid-19 pandemic’s growth and decay trajectories based on
the reported incidence rates from each geographical region.
The results of the model compares the evolutionary trend of in-
cidence rates across 20 different countries with the discussion
on the various non-medical interventions by the corresponding
Governments and its citizens’ response and cooperation.

Materials and Methods

Data Sources

The data used for this research was obtained from the COVID-
19 Data Repository by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University [15]. Specif-
ically, the time series dataset for global confirmed cases was
used for the mathematical modeling. The time series dataset
is a daily updated data file with incidence rate numbers from
each country from where official data was made available.
For the purpose of analysis, the daily time series dataset was
transformed to a weekly time series dataset. This provides the
ability to visualize and gain insights into the weekly incidence
rate growth and decay with respect to time. Also the reported
incidence numbers do not reflect the actual reality of infection
spread due to the fact the patients who got tested for Covid-19
had their results available only after a certain time period.

Mathematical Modeling

The Covid-19 incidence rate growth and decay and be con-
strued as non-linear wave traveling through time. In order to
model the non-linearity we propose a non-linear approxima-
tion model using a linear combination of Gaussian and Cauchy
Lorentz composite functions. The Gaussian and Lorentz com-
posite functions have been earlier introduced and applied to

surface chemical analysis and peak fitting of X-ray photo-
electron spectroscopy (XPS) data [16]. Both Gaussian and
Cauchy Lorentzian functions have specific properties which
when used in combination as a composite function can be
used to linearly approximate any non-linear wave. The fol-
lowing general mathematical expressions Egs. (1a), (1b) and
(1c) respectively define the Gaussian, Lorentzian and GLC
function.

G(x(t)|h, p,0) = hexp~ /207 (1a)
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L(x(t)|hp,0) = h

GLC(x(t)|h, 1, 0) = h(1 —m) exp~ 1)/
hm o?

ormwy 0

x(t) = weekly Covid-19 incidence rate

h = amplitude indicating the peak value of weekly
incidence rate

W = mean value indicating the time period when the
incidence rate peaked

o = standard devation characterizing the variance in the
incidence rates across the time

In the above equations, the factor m is a constant that
blends both the Gaussian and Lorentzian function into the
GLC function. When m = 0, (1¢) reduces to (1a) an when
m =1, (1c¢) reduces to (1b).

The mathematical functions defined by (1a), (1b) and
(1c) are illustrated by Figure.1. The graph is plotted based on
Covid-19 incidence data for Taiwan. The parameter values
used to compute the functions for each of the three curves are
h=144, u=64 and o=13.7. It can be noted that the Gaussian
function represented by the green curve starts its growth from
zero and ends at zero indicating that the origin and end of
the pandemic are at specific time periods. The issue with
modeling incidence rate evolution with a pure Gaussian func-
tion is that it does not take into account the uncertainty of
when the actual spread of Covid-19 infection started in a pop-
ulation. Since data was available from the Jan 22, 2020, it
is assumed that incidences from that particular day onward
marked the starting of the outbreak. However, in reality it
is a well known fact the timeline of spread of infections in
a population is unknown and only when Governments begin
testing a small fraction of the population, the officially re-
ported numbers become the baseline for all modeling efforts.
Likewise, the Covid-19 pandemic decay trajectory does not
end towards zero incidences and it continues to linger among
the population indicating a possibility of becoming endemic
[17].
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Figure 1. Gaussian, Lorentzian and GLC Curves

Despite its direct inapplicability towards modeling the
evolution of Covid-19 incidence rate, the Gaussian function
has a unique property defined by the Central Limit Theo-
rem (CLT). The CLT states that when an observed random
variable is the sum of many random processes, the resulting
distribution of the random variable is a Gaussian distribution.
Further, the Gaussian function has been used for non-linear
approximation problems due to its simplicity and mathemat-
ical transformative properties [18, 19]. To account for the
uncertainties during the start, growth, decay and the end of
the Covid-19 incidence rates, the Lorentzian function is cho-
sen. The distribution defined by a Lorentzian function is also
referred to as a pathological distribution since its expected
value and mean are undefined. Referring back to Figure.1,
the blue curve represents the Lorentzian function. The red
curve representing the GLC function has the mathematical
properties of both the Gaussian and Lorentzian functions to
model the Covid-19 incidence rate evolution accounting for
high non-linearity and uncertainty.

Upon analyzing the Covid-19 incidence rates for 20 coun-
tries, the evolutionary trajectory of weekly incidence rates
which is being considered as a non-linear wave can be linearly
approximated using two GLC functions at different scales.
More specifically, we consider a pair of GLC wave compo-
nents in a linear combination to approximate the non-linear
incidence rate trend. Using (1c), the dual wave GLC function
can be formulated as follows.

G/\Lc(x(t”hl,lihcl, hy Wp,02) =
GLC1 (x(t)|h1,11,01) + GLCy(x(1)|ha, 2, 02)

@)

The GLC function and the dual wave GLC functions are
illustrated in Figure. 2. Referring to Figure.2, the green and
orange curves represent the GLC model for first and second
wave components respectively for Taiwan. The first wave
component represents the evolutionary phase of Covid-19
weekly incidence rate wherein a clear trajectory is evident

indicating the start, growth, peaking and decay beginning
from the time period Jan 22, 2020 from when data is currently
available. Further, it can be noticed that around April 22,
2020, there seems to be sudden a surge in the number of
weekly incidences. This phenomenon indicates a second wave
component which has its own start, growth, peaking and decay
trend. Mathematically, the probability density functions of the
GLC curves denote the likelihood of measuring a particular
value of the Covid-19 weekly incidence rate at a specific point
in time. However, compared to the first wave component, the
amplitude or peak of the second wave component is much
smaller.

Taiwan Covid-19 Incidence Rate Evolution Trend
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Figure 2. Incidence Rate Trend Model for Taiwan wherein the
second wave component is smaller than the first wave component.

Hong Kong Covid-19 Incidence Rate Evolution Trend
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Figure 3. Incidence Rate Trend Model for Hong Kong wherein the
second wave component is larger than the first wave component.

The second wave component is introduced in order to ac-
count for the dynamics of resurrgence of Covid-19 incidences
or the outcome of non-medical Governement interventions in
a population to contain the spread of the pandemic. Two spe-
cific hypothesis are considered that can explain the occurrence
of the second wave component. First, it can be attributed to the
low number of tests for Covid-19 infections done on a small
fraction of a country’s population. Due to the low testing rates,
the segment of the population who were asymptomatic earlier
may start showing symptoms for Covid-19 later and by then
they could have further spread the infection in the commu-
nity potentially contributing to the weekly incidence numbers.
The second hypothesis is that in inspite of non-medical inter-
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ventions such as local or national lockdown strategies of the
Governments, the compliance of citizens to various policies to
contain the spread of Covid-19 cannot by fully ascertained and
enforced across the entire population. In some countries, the
size of the population, socio-economic structure, population
density, cultural factors and mobility dynamics can contribute
to non-compliance towards non-medical interventions. Con-
sidering both the hypothesis, it can be inferred that there is a
likelihood of presence of a second wave component that can
be smaller or larger compared to the first wave component.

Figure.3 illustrates the incident rate trend model for Hong
Kong wherein the second wave component is larger than the
first. The dual wave GLC function represented by the black
curves in both Figure. 2 and Figure. 3 is a non-linear ap-
proximation of both first and second wave component. The
best fit model of dual wave GLC function to weekly Covid-19
incidence rate is illustrated by the blue curve. The best model
fit is obtained using a combination of Nelder-Mead method
and Levenberg—Marquardt’s Damped Least-Squares method.
The best fit model is presented in this paper only to highlight
that mathematical models trying to deliberately perform a
best fit on the existing data are highly biased. As stated in
the beginning of the paper, the officially reported, Covid-19
incidence data does not reflect true spread of the pandemic
and hence the best fit model of any method is fundamentally
flawed. On the contrary, the non-linear approximation of both
the first and second wave components by the dual wave GLC
function is an optimal solution to modeling the evolution of
Covid-19 incidence rates. Futher, the probability density of
the dual wave GLC function also can account for the uncer-
tainty and variance in incidence rate evolution over a defined
time period.

Parameter Estimation

Estimating the parameters of the GLC function is critical
in effectively approximating the non-linearity of Covid-19
incidence rates. Parameter estimation is done based on the
following series of mathematical relationships of first and
second wave components iteratively.

hy =0 h}, 0 — max(xo(t),x;(t),x2(¢),x3(2)...5,(2)) (3)
bt 1 if Ois known
' 1 Ruo if Bis unknown
n =Aty +1ty, 1o EZE() 4)
Atg

61 == ?Gf, Gik € R>0 (5)

where: (6)
tg =1(0) — Weekly incidence peak date (7)
to =1(xg) — Weekly incidence origin date

3
Aty =tg—ty — Time to reach 6 ©)]
h
hy= o, b5 ERs (10)
2
At
Ho=Atg+—2>+15, 11 €Rog (11)
Hy
0, =005, 0, ERyg (12)

Table 1. Constant values for dual wave GLC parameter
estimation. The values of the constants were chosen based on
Global Covid-19 incidence data as on May 31, 2020.

First Wave Second Wave
Component Component

o i B & 1
Australia 1 1 4 9 25 0
New Zealand 1 0.8 6 6 2 0
Taiwan 1 1.5 25 45 2 0
Hong Kong 1 1 1.5 90 20 O
South Korea 1 1 2 45 25 0
Japan 1 1.5 25 11 1 0
Norway 1 1.5 45 28 25 0
Spain 1 1.5 4 1.7 2 2
Germany 1 1.5 5 22 2 2
France 1 1.2 5 1.8 09 4
Italy 1 1.5 4 15 25 4
Singapore 1 1 55 13 25 O
US 1 2 55 1.1 40 O
UK 1 1.5 45 1.1 2 4
Russia 1 1.5 55 12 25 2
Canada 1 1.8 35 16 14 4
UAE 1 1.6 55 15 10 O
India 1.5 2.0 55 15 22 25
Sweden 1.5 2.5 20 20 08 28
Brazil 1.4 2 55 1.1 22 20

Availability of enough and quality data is highly critical
to any mathematical analysis. Trying to model a highly non-
linear phenomenon like Covid-19 incidence rate evolution
at the early stage wherein data is sparse can lead to biased
outcomes that can negatively influence strategic decisions on
epidemic management. Hence it is prudent to wait for the
availability of the right amount of data to be able to model
and understand fundamental patterns of infection spread in a
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population. One of the key requirements of the GLC method
is the availability of incidence rate data on the complete evo-
lutionary trend atleast for a set of geographic regions. In this
research, the dual wave GLC function was initially applied to
Taiwan, Hong Kong, South Korea, Australia, New Zealand
since their incidence rate data had the complete trajectory of
the curve encoded from start to flattening of the curve. Param-
eters were estimated for the first and second wave components
of each of the forementioned countries by iterative greedy se-
lection of the value of the constants h7, 1y, o7, h3, Uy and o5
detailed in Table 1.

Referring to (3) and (10), k] and h3 represents scaling
factors that are used to control the amplitude of the first and
second wave components respectively. A} is defaulted to 1, if
0 which indicates the maximum value of weekly incidences
can be estimated based on available data. Hence for countries
that have reached their peak incidence rate and have started
showing a decaying trajectory, h] will be 1. Analyzing the
estimated amplitudes of 41 and A, for each of the 20 countries
reveals that undetected spread of infection prevalent in a pop-
ulation and the low testing rates manifest as the second wave
component after the first wave component reaches its peak.
This explains the asymmetrical nature of the incidence rate
curve wherein the decay trajectory has a longer oscillatory tail
compared to the exponential growth trend at earlier phase of
the curve. In a majority of the cases, the value of /; is higher
than h;. However, in some cases like Hong Kong, Japan, Fin-
land, France and UAE, the amplitude of /; is smaller than the
amplitude of h,.

As on current date of this research, India, Brazil and
Sweden have not yet reached their peak of weekly incidence
rates. In such cases, the A} value need to be chosen accord-
ingly to account for their growth trajectory and when they
may reach their peaks. The choice of the A} value is made by
comparing the similarity of incidence rate evolutionary trajec-
tories of other countries who have successfully flattened the
curve along with other factors such as Covid-19 positivity rate
and population to testing rate estimated based on public data
source [20]. Further, /3 is selected according to the trajectory
of the first wave component whether it is yet to reach the peak
or has reached the peak and is on its decay trend. The scaling
factor A3 creates an inverse relationship between 4 and h;.

The constant 74 in (4) is chosen to quantitatively account
for the effects of non-medical interventions such as lockdown
and recommendation policies by Governments across each
country. Non-medical interventions range from national or
local recommendations on Covid-19 health protocols to strict
enforcement of local or national lockdown of economies [21].
Upon analyzing Table.1, it can be noted that countries that
had strict local or national lockdown measures have a value
of 1y > 0. A non-zero value of #4 results in shifting of the
center Uy of the first wave component with respect to the
start of incidence reporting date. This means that any strict
measures enforced to restrict mobility and economic activity
of a population resulted in shifting of the amplitude or the

peak h; of the incidence rate evolution trajectory by a factor
of 74 days.

For example, the value of 7y for Sweden, India and Brazil
are much higher compared to any other country. Hence it can
be inferred that the national and local lockdown measures in
India and Brazil have postponed the date on which the inci-
dence rate trend curve will reach its peak. India’s national
lockdown started on Mar 24, 2020 and further enforced a se-
ries of extended lockdowns till the end of May 2020. Till May
2020, India has not reached the peak of its weekly incidence
rate trend. Countries that have a smaller value of 74 reached
their peak of incidence rate evolution after enforcing strict
lockdown measures but at the cost of very high incidence and
mortality rates. On the contrary, Sweden is one of the coun-
tries which never had strict lockdown measures and has not yet
reached the peak of incident rate curve at the time of this study.
Therefore it has been observed that both strict lockdown and
no lockdown measures can both contribute to postponement
of attaining the peak of incidence rate evolution.

Parameter constant p; enables tuning the position of oc-
currence of the second wave component with respect to the
first. The manifestation of the second wave component char-
acterized by its center Uy depends on the scale of community
transmission that happend after non-medical interventions
were implemented. In reality, it would be impossible for any
country to trace, monitor and test a large segment of its pop-
ulation and ensure full compliance and enforcement of its
policies across the entire geography. These segments of the
population who got infected during the community transmis-
sion phase of SARS n-COV and who were untested untill the
peak of the first wave component was attained, will manifest
as the second wave component once testing becomes more
widespread.

The constansts 6] and o5 are control parameters that
enables tuning the width of o7 and o, respectively. A smaller
the value of o) and o5 ranging between O and 1 indicate
that Government strategies to manage the Covid-19 infection
spread and the cooperation and compliance of its citizen re-
sulted in successful flattening of the curve. Countries such
as Australia, New Zealand, Taiwan, Hong Kong and South
Korea have the smallest standard deviations of the first and
second wave components and hence are considered to have
implemented some of the successfull Covid-19 containment
strategies. On the other hand, countries with larger values of
o1 and 0, indicate that the pandemic containment strategies
led to dealing with much higher incidence and mortality rates.
The large standard deviations indicate the nature of variance
in early implementation of control measures, testing rate for
Covid-19, speed and effectiveness of contact tracing and im-
portantly the compliance of the population adhering to health
protocols and social distancing measures. The values of esti-
mated parameters based on the selected constants described
above are detailed in Table. 2.
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Table 2. Details of the dual wave GLC parameters estimated based on Global Covid-19 incidence data as on May 31, 2020.
NMI indicates Non-Medical Intervention (NMI) and NMI Delay Factor quantifies the delay in number of days to reach the
peak amplitude of the first wave component. The GLC function parameters are estimated using equations 3 to 11 based on an

iterative greedy selection of parameter constants.

First Wave Component Second Wave Component NMI Positivity Tests to
Delay Rate Population
Factor Rate
h H o} hy H2 o Iy

Australia 2679 68 9.71 297.68 85 24.29 0 0.57% 4.89%
New Zealand 525 74 8.46 87.5 86.3 16.91 0 0.58% 5.42%
Taiwan 144 64 13.71 32 89.6 27.42 0 0.62% 0.30%
Hong Kong 394 23.3 20 355 70 10 0 0.53% 2.71%
South Korea 4360 42 6 969 63 15 0 1.36% 1.61%
Japan 390.01 52.2 18.64 4291 87 18.64 0 6.10% 0.21%
Norway 1899 67 1436 67821  81.89 35.89 0 3.56% 4.33%
Spain 56038 71 1479  32963.5 88.25 29.57 2 7.95% 7.61%
Germany 40856 73 15.21 18571 87.2 30.43 2 5.02% 4.29%
France 32616.1 72 13.11 58709 89 14.57 4 13.19% 221%
Italy 39554 68 13.71 26369 84 34.29 4 6.61% 5.76%
Singapore 7036 95 13.57 541231 112.27 3393 0 10.86% 5.04%
[N 221048 79 22.57 200953 9336  90.29 0 11.29% 4.54%

UK 38896 87 17.79 35360  105.44  35.57 4 7.39% 5.21%
Russia 76873 113 2379  64060.8 133.18  59.46 2 3.95% 6.13%
Canada 13454 95 234 8408.75 121 32.76 4 5.74% 3.92%
UAE 4084.67 100.64  28.11 6127 123 28.11 0 1.48% 20.70%
India 94039.5 160 38.57 62693  184.55 84.86 25 4.78% 0.22%
Brazil 252847 155 38.57 229861 179.55 84.66 20 50.04% 0.35%
Sweden 9694.5 163 4243 484725 955 33.94 28 16.12% 2.08%

Results and Discussion

The dual wave GLC function was used to model the incidence

rate evolution trend for 20 countries based on the estimated
parameters for both the first and second wave components.
The results of the non-linear curve approximating the first
and second wave components of weekly incidence rate trend
are illustrated in Figures. 4 to 20. In order to compare the
incidence rate trends in line with the non-medical intervention
strategies implemented by each Government, the 20 countries
are clustered into four groups. Cluster 1 represents countries
that have successfully flattened the incidence rate curve. Sim-
ilarily Cluster 2 represents countries that are on the verge of
flattening the curve as on the current date of June 6, 2020.
Cluster 3 represents countries that have reached the peaks and
are on a decay trajectory. Finally, The Cluster 4 represents
the set of countries that are yet reach their peak of incidence
rate trend as on June 6, 2020. Based on the models generated
for 20 different countries with diverse population dynamics,
Government strategies it is established that the dual wave
GLC function can approximate the incidence rate evolution
of Covid-19.

The probability density of the GLC curve can provide
an estimate of the weekly incidence rate at that point in time.
Given the nature of the Covid-19 pandemic in terms of the rate

of its spread, incubation period, virulence, pathogen evolu-
tion and population response and compliance to Government
health protocols, it would be impossible for any model to
make a long term prediction of incidence rate trend. The
same is applicable for the presented dual wave GLC model
and hence a short forecast horizon of 180 days is consid-
ered for all the countries. Analysis of the various clusters
described above shows a pattern of evolution of the incidence
rates across geographies. The choice of parameter constants
and correspondingly the estimated GLC model parameters on
the success of different Covid-19 containment strategies by
different Governments are detailed in Table. 1 and Table. 2
Referring to cluster 1, the GLC models for both first and
second wave components indicate a smaller standard deviation
as described earlier. This phenomenon indirectly gives insight
into the coherence between Government-Citizen dynamics in
successfully mitigating the spread of the pandemic. For exam-
ple, in South Korea and Hong Kong citizens wore face masks
right from the time their Governments stepped in with advi-
sory on Covid-19 health protocols. Hence, one of the primary
success metrics to flattening of the curve” can be attributed to
Government-Citizen coherence dynamics. Cluster 1 exhibits
an example of positive coherence dynamics between the Gov-
ernment and its citizens. The other key metric to interpret the
evolution of the incidence rate curve is the Covid-19 testing
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rate. Incidence rate data is fundamentally based on the scale
of testing and positivity ratio. While it is important to test a
population at the largest scale possible given the resources and
capacity of a country, the fact that a tested individual can still
be infected in the futrue still remains. Hence the positivity
rate based on which the incidence rate numbers are reported
is just a snapshot in time of the spread of SARS n-COV. This
snapshot can be used to plan for the near future rather than
to make absolute conclusions about a country’s containment
strategy nor about the pathogen itself. Referring to Table. 2,
it can be noted that the testing rates of Japan and Taiwan are
the lowest in the world with testing done only on 0.21% and
0.30% of the populations respectively. However, the GLC
model curves illustrate both Japan and Taiwan are among the
few countries that succesfully flattened the curve with lowest
incidence and mortality rates.

Since India, Sweden and Brazil have not yet reached their
peak incidence rate, the GLC models for the three countries
have been generated based on the average values of constant
parameters o}, 05, 45 and k] of first and second wave compo-
nents from countries in clusters 1, 2 and 3, excluding outliers.
The value of parameter constant i} for the forementioned
countries was selected based on the similarity of their inci-
dence rate evolution curve compared to others in the various
clusters. As of June 6, 2020, India’s incidence rate closely fol-
lows the trend of Russia whose weekly incidence rate peaked
at 76873. Further, the only other country in the entire set of
clusters which has a higher incidence rate trend compared to
Russia is the US. However, India’s non-medical interventions
is very different than that of US but comparatively similar to
that of Russia. Accordingly, the i} parameter constant for the
first wave component for India is chosen to be 1.5. It means
that the weekly incidences at peak for first wave component
could reach approximately 91000 between June 15, 2020 and
July 15, 2020. Considering this trend, India will potentially
have approximately 50000 to 60000 weekly incidences at the
beginning of September 2020.

The incidence rate trend for Sweden is still in the growth
trajectory like India and Brazil. However, the main difference
is that Sweden is currently having its second wave component
being manifested. The growth trajectory of the second wave
component as on June 6, 2020 is moving towards a higher am-
plitude compared to the amplitude of the first wave component.
With a similar parameter constant selection strategy described
above for India, Sweden could reach its peak weekly incidence
rate between the July 1, 2020 and July 15, 2020. At this trend,
the weekly incidence rate at the beginning of september could
be approximately between 1500 to 2000. Brazil’s incidence
rate trend has similarity that of US. Even with a very low
testing rate of 0.35%, the positivity rate for Covid-19 is the
highest in the world with 50.04%. This means 1 out of every 2
individuals tested confirms positive for Covid-19 as of testing
statistics till May 31, 2020. With parameter constants similar
to that of US, Brazil could potentially reach the peak weekly
incidences of approximately between 240000 to 250000 if the

country scales the testing efforts widely across the population.
At the beginning of September 2020, the weekly incidence
rate could still be around 170000.

The dual wave GLC function can be extended to a multi-
wave model to account for resurrgence of the Covid-19 inci-
dences in the future. For example, South Korea has started
witnessing the resurrgence of incidences after economic ac-
tivity restarted from the first week of May 2020. Similarly,
France and Hong Kong has seen resurrgence of incidences
since the last week of May 2020. While extension of the dual
wave GLC function is straigthforward to model resurrgence
phenomenon, the multi-wave modeling is currently out of
scope of this research.

Sensitivity analysis was performed on the GLC models
generated for each country using Sobol Sensitivity analysis
and Saltelli’s sample generating function [22, 23, 24]. Sobol’s
sensitivity analysis decodes a model’s variance into compos-
ite variances related to the model parameters in progressive
dimensions. A key outcome of the Sobol sensitivity analy-
sis are the estimation of sensitivity indices that explain the
variability of a model’s output based on individual parameter
significance and the interactions between them. The Sobol
Sensitivity Indices (SSI) represents first-order and total-order
sensitivity which reflects the influence of an individual model
parameters and the interaction between them [25]. Model
parameters with SST > 0.05 are considered significant and

N
Y SSI; = 1. Further, the SSI of total-order indices is greater

=1
Ithan SSI of first-order indices.

Figures 21, 22, 23 and 24 illustrate sensitivity analysis
performed on Japan, South Korea, Germany and United King-
dom by generating 560 models each for a range of dual wave
GLC model parameters. S1 and ST are the first-order and
total-order sensitivity indices. S1_conf and ST_conf are the
bootstrap confidence intervals (1.96*standard error) and 95%
confidence intervals. Higher the sensitivity indices, more crit-
ical are the model parameters for its output. For Japan, the
parameter amp_g_1 representing the Gaussian part of A in
the first wave component is the most important parameter
contributing to 85% of the model output variability followed
by cen_g_1 representing | of the Gaussian part of the first
wave component. SSI for South Korea indicates amp_g_1 and
cen_l_1 contributing to approximately 37% each of the model
output variability followed by cen_g_1 and wid_1_1 in the or-
der of significance. For both Germany and UK, the parameter
cen_l_1 representing t; of the Lorentzian part of the first wave
component contributes to more than 90% of the model output
variability.

In conclusion, the properties of Dual wave GLC model
using Gaussian and Lorentzian functions has been shown to
model the highly non-linear evolution trend of Covid-19 inci-
dence rates. The mathematical properties of the GLC function
can effectively be used to model the non-linearity of incidence
rates and also account for the uncertainty in officially reported
numbers. The resulting short term forecasts for each country
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especially India, Sweden and Brazil should be used only as
a guidance in planned rebooting of the economies instead
of absolute reliance on the predictions. Any mathematical
model is as good as the data and the assumptions that come it.
Modeling uncertainty is highly complex and hence any math-
ematical forecast need to be assessed along with experiential
and ever evolving intuitive knowledge of pandemic.

Data and Code Availability

Data is available publically from the COVID-19 Data Repos-
itory by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University. Code for dual wave GLC
modeling can be obtained from https://bitbucket.
org/radkris_xformics/covidl9_glc.
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Figure 4. Dual wave GLC model for Australia Figure 7. Dual wave GLC model for Hong Kong
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Figure 5. Dual wave GLC model for New Zealand Figure 8. Dual wave GLC model for Japan
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Figure 6. Dual wave GLC model for Taiwan Figure 9. Dual wave GLC model for Norway

Dual wave GLC Models for Cluster 1: Countries that flattened the curve
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Figure 10. Dual wave GLC model for Spain Figure 12. Dual wave GLC model for France
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Figure 11. Dual wave GLC model for Germany Figure 13. Dual wave GLC model for Italy

Dual wave GLC Models for Cluster 2: Countries that almost flattened the curve
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Figure 14. Dual wave GLC model for Singapore

US Covid-19 Incidence Rate Evolution Trend
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Figure 15. Dual wave GLC model for US

United Kingdom Covid-19 Incidence Rate Evolution Trend
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Figure 16. Dual wave GLC model for United Kingdom
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Figure 17. Dual wave GLC model for Russia

Canada Covid-19 Incidence Rate Evolution Trend
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Figure 18. Dual wave GLC model for Canada

United Arab Emirates Covid-19 Incidence Rate Evolution Trend
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Figure 19. Dual wave GLC model for United Arab Emirates

Dual wave GLC Models for Cluster 3: Countries that are on decay trajectory from peak
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Total no. of Incidences from Jan 22, 2020 till date: 236184

Total no. of Incidences/Week
140000 GLC Model best fit
——\GLC Model for First wave component

LC Model for Second wave component
120000 C Model

100000

80000

60000

40000

New Covid-19 incidences per week

20000
0

PP S R A0 A A
0% 0P 0P 0P 0P 0% 0 0P o o o
PN N SN I N L Ll

Covid-19 Incidence Rate timeline

(@) Dual wave GLC model for India

Sweden Covid-19 Incidence Rate Evolution Trend
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(b) Dual wave GLC model for Sweden

Brazil Covid-19 Incidence Rate Evolution Trend
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(¢) Dual wave GLC model for Brazil
Figure 20. Dual wave GLC models for Cluster 4 countries
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Sobol Sensitivity Indices for Japan
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Figure 21. SSI for Japan
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Sobol Sensitivity Indices for South Korea
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Figure 22. SSI for South Korea
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Sobol Sensitivity Indices for Germany
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Figure 23. SSI for Germany
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Sobol Sensitivity Indices for United Kingdom
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Figure 24. SSI for United Kingdom
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