ABSTRACT
The disease burden of SARS-CoV-2 as measured by tests from various countries present varying estimates of infection and fatality rates. Models based on these acquired data may suffer from systematic errors and large estimation variances due to the biases associated with testing and lags between the infection and death counts. Here, we present an augmented compartment model to predict epidemic dynamics while explicitly modeling for the sampling bias involved in testing. Our simulations show that sampling biases in favor of patients with higher disease manifestation could significantly affect direct estimates of infection and fatality rates calculated from the numbers of confirmed cases and deaths, and serological testing can partially mitigate these biased estimates. We further recommend a strategy to obtain unbiased estimates, calculating the dependence of expected confidence on a randomized sample size, showing that relatively small sample sizes can provide statistically significant estimates for SARS-CoV-2 related death rates.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
University of Connecticut Health Faculty startup funds were used.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
No new patient data is generated, but all models will be made available upon publication in peer reviewed journals.