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ABSTRACT 

 
The disease burden of SARS-CoV-2 as measured by tests from various countries present varying 

estimates of infection and fatality rates. Models based on these acquired data may suffer from 

systematic errors and large estimation variances due to the biases associated with testing and lags 

between the infection and death counts. Here, we present an augmented compartment model to 

predict epidemic dynamics while explicitly modeling for the sampling bias involved in testing. 

Our simulations show that sampling biases in favor of patients with higher disease manifestation 

could significantly affect direct estimates of infection and fatality rates calculated from the 

numbers of confirmed cases and deaths, and serological testing can partially mitigate these biased 

estimates. We further recommend a strategy to obtain unbiased estimates, calculating the 

dependence of expected confidence on a randomized sample size, showing that relatively small 

sample sizes can provide statistically significant estimates for SARS-CoV-2 related death rates.   

INTRODUCTION 

The spread of SARS-CoV-2 across the world has led to a significant disease burden with 

widespread health impact. While the search for a vaccine or a successful pharmaceutical agent 

continues, non-pharmaceutical interventions have been the only currently available recourse. 

Planning and implementing such interventions is intimately connected with epidemiological 

disease modeling and requires the estimation of key metrics such as the speed of infection spread, 

recovery and fatality rates, and kinetics related to the persistence or loss of acquired immunity. 

Early reports from the World Health Organization (WHO)  stated a case fatality rate of over 3.8%1 

for SARS-COV-2 as it was first detected in Wuhan, China and spread across the world. 

Subsequently, epidemiological modeling and projection, with its inherent estimation of infection, 

recovery, and fatality rates has become central to various institutional actors dealing with the 

management of epidemic. These studies and  reports are, by necessity, ultimately based  on 

reported numbers from tested patients, which were sampled by public health agencies in the 

countries where virus had started spreading2-4. However, there are wide differences across 
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countries in the number of people who were tested, the availability of test kits, as well as the 

stratification of the population that were tested. With this criteria, the presentation of infection, 

recovery, and case fatality rate (CFR) based on current SARS-CoV-2 data is difficult to interpret 2-

4, masking the true extent and dynamics of the disease spread and ensuing fatality.  

We were among the first to raise concerns regarding the accuracy of determined fatality rates 

based on two potentially important issues5,6. These issues deserve the attention of the scientific 

community involved in understanding the spread of the pandemic. One of these is the underlying 

spread of immunity. Reverse transcription polymerase chain reaction (RT-PCR), the commonly 

employed method to confirm the presence of SARS-COV-2, only informs about the live status of 

the virus in the population, and therefore may mask the percentage of people who contracted the 

virus and subsequently  resolved the infection by acquired immunity7, if the disease has spread 

more than our current estimates suggest. SARS-COV-2 is known to induce a detectable antibody 

response following few days of infection7,8. An initial report suggested that a larger cohort of 

tested populations which were negative for an active viral load can now be regarded as having 

previously contracted the virus9, but the effect size found was smaller than could be statistically 

determined from error rate of the underlying test, besides concerns about the sampling bias 

during recruitment of the subjects. . Serological testing using a better study design by other 

researchers or public health agencies will not only shed more light on the true prevalence of 

COVID-19 resistance, but subsequent follow up of any COVID-19 immune individuals found 

therein will also answer very critical questions on the nature and persistence of COVID-19 

immunity in the general population. Without sufficient attention to these questions, it will not be 

possible to model the chances of subsequent waves of COVID-19 spread in the future with much 

confidence. This in turn has grave implications for public health capacity planning and 

intervention decisions beyond the next few months.  

Secondly, we highlight the bias within the sampling (testing for SARS-CoV-2 presence), which 

could potentially alter the estimates of both the infection and fatality rates. There have been 

multiple mathematical studies modeling the kinetics of disease spreading with and without social 

distancing interventions10. However, these are dependent on model parameters estimated from 

limited, and likely biased and non-uniform sampling, as indicated by large differences across 

countries in the rate of fatalities. The data collected across countries were collated for the objective 

of public health operations, identifying infected individuals and tracing their contacts etc., and 

for preparation of adequate health facilities. However, these approaches may introduce bias in 

testing for individuals presenting with symptoms, rendering models built on these data 

vulnerable to systematic sampling bias.  This raises significant concerns regarding the accuracy 

of the estimates of fatality and morbidity rates, with far reaching consequences on capacity 

planning and policy making.  

In this work, we present a new model to predict the dynamics of disease spread by augmenting 

the commonly employed SIRD compartment model by stratifying the infected population and 

introducing bias in their sampling. We show that biases within testing could have a significant 
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effect on the estimation of the infection and fatality rates. We also accounted for testing by 

serological means and found that estimation of acquired immunity could partially mitigate the 

effect of testing biases. We also demonstrate that because death counts lag the infection rate, case 

fatality rates may underestimate the infection fatality rates.  

However, large variance within the estimation of infection, as well as fatality suggested a strong 

need to determine the effect of bias within sampling itself. As the countries have introduced 

substantial social distancing, it has become difficult to predict if the disease has spread widely, or 

only in limited population niches. In which case the high estimation of fatality rates from 

positively tested patients in certain countries could either mean a high true fatality rate, or a high 

sampling bias wherein the more symptomatic patients with an enhanced likelihood of mortality 

are tested. Both these scenarios are theoretically plausible, and it is essential to estimate the true 

fatality rates associated with the epidemic to mount an appropriate response, or for an informed 

preparation11. Indeed, these numbers vary widely across different countries, resulting in large 

variations in suggested mortality rates11. In practice, kinetic models used to project the epidemic 

spread attempt to mitigate or sidestep the effects of sampling bias by various methods. Verity et 

al. give estimates for the infection fatality rates based on testing of foreign nationals repatriated 

from China12. While this sample may not have been directly biased with symptom severity, it is 

still likely to be highly correlated to age, health, and placement within social and physical contact 

networks, and therefore indirectly correlated with infection status and susceptibility to fatality. 

Other methods may fit on reported deaths, which are less likely to suffer from sampling bias, but 

could miss untested fatalities. We therefore propose that an unbiased randomly sampled testing 

study in a region with high fatality presents the best course to estimate the true fatality rates. Our 

calculations indicate that a reasonable unbiased testing sample can provide high confidence data 

to test the hypotheses of different fatality rates.  

Together with our augmented compartmental model, our proposed scheme presents a coherent, 

statistically rigorous estimation method to determine infection and fatality rates, which is both 

cognizant of the testing bias in favor of the more symptomatic or severe patients, and given 

sufficient follow-up time, resistant to the underestimation bias due to lagging death counts. 

RESULTS 

An Augmented Compartment Model to Estimate Epidemic Dynamics Incorporating 

Testing Bias 

We considered an augmentation of the currently prevalent models of epidemic dynamics 

to explicitly model the potential sampling bias within the tested populations for the 

specific disease, thus enabling the modeling of reported case numbers and the effects of 

different testing strategies. In the context of SARS-CoV-2 infection, this sampling bias is 

potentially large because data from different countries present very different fatality rates 

(Figure 1A). Indeed, directly measured case fatality rates (CFR) was proportional to how 
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biased the sampling of positive tests were in each country (number of positive cases 

found per unit test conducted) (Figure 1A).  We therefore attempted to incorporate biases 

involved in the stratification of populations tested for the active viral load, with an 

objective to study the effect of sample bias in the reported case numbers and any 

subsequent direct estimates of infection and fatality rate dynamics.  

 

The most common model used to study epidemic dynamics is the SIRD compartment 

model, from which many derivatives have been designed. We decided to choose the 

simplest SIRD model to test whether testing bias could have an effect in the estimate of 

patients belonging to a given compartment. The basic SIRD compartmental model 

stratifies the population in 4 compartments: Susceptible (S), Infected (I), Recovered (R), 

and Dead (D). Movements of subpopulations from one compartment to the other are 

described by ordinary differential equations (ODEs). The parameters for each of these 

ODEs are the rate constants, β, describing the rate of infection, and γ, describing the rate 

of death (Figure 1B).  

 

In various countries, the initial tests for viral presence have been biased based on the 

severity of the disease manifestation, or weighted towards symptomatic patients. 

However, in certain situations, these biases could be present in other directions too, 

wherein patients with more likelihood of death are under-sampled. We therefore decided 

to introduce testing bias by stratifying the infected population based on the severity of 

disease manifestation. Specifically, we further stratified the infected compartment (I) into 

two other sub-compartments, H (high) and L (low) referring to the high or low 

symptomatic manifestation of the disease respectively. Although the transition from the 

S (susceptible) compartment to the infected (I) is driven by rate constant β, the factor q 

describes the fraction of the infected subpopulation manifesting a high symptomatic 

manifestation of the disease. We assumed that the fraction within L (low manifestation) 

die in miniscule rates, and nearly all deaths occur from the H fraction. This added sub-

compartmentalization is a simple addition to the model, but we believe that if well-

defined stratification could be measurably identified within the infected (I) compartment, 

more subcompartments should be added. These fractions could include people with 

known co-morbidities with a higher chance of fatality, or those with measurably high 

severity of disease manifestation. 

 

We then superimposed upon our augmented compartment model a testing policy 

(Figure 1C). We assumed that T tests are available per unit time (kept constant for 

simulations below, but which could itself be a time varying function based on the 
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availability of testing capabilities over time). The untested, and alive individuals are 

assumed to be randomly selected for testing in proportion to their numbers, but those 

with high disease manifestation (H) are selected with an increased bias b. In addition, 

patients who were tested as being negative for viral load at a previous time point, but 

presenting severe symptoms at the present time would also be selected with an increased 

bias b. The biased testing policy was implemented by splitting the compartments in our 

augmented SIRD model for the untested and the tested fractions (Figure 1D). True death 

rate would depend upon the factors q (fraction with high disease manifestation), and f 

(fraction dying within the H compartment) (Figure 1E). Details for the ODEs describing 

the transition through these compartments are provided in the Methods section. 

 

Testing Bias Strongly Affects the Direct Estimation of Infection Rate 

We simulated our augmented compartmental model with testing bias and calculated the 

infection rate dynamics based on an active viral test (based on measurement of viral 

sequences), as well as based on a serological test (measuring if antibodies against the 

virus have been created). In our augmented model, the estimated infection rate is 

calculated as a ratio of those tested positive, and all tested population within a given time 

frame. Here, the testing bias is reflected within the sampling of stratified populations, H 

and L in the infected (I) compartment.  

 

Assuming no errors within the tests (sequence based, or serological), we found that 

testing bias had a profound effect on the naïve estimation of infection rate based on active 

viral test, the most commonly employed tests (Figure 2A). In contrast, estimation of the 

contraction rate was much less affected by the bias, largely because the immunologically 

recovered population as a fraction increases as time progresses (Figure 2B). Our 

simulation provides a strong argument in favor of serological testing beyond the obvious 

argument of their capability to correctly assign the compartment of recovered (R) fraction 

to the population which contracts the disease but tests negative. That the testing bias 

could be substantially mitigated in the estimation of contraction rate by serological test is 

a strong argument in favor of serological testing, although these tests are unlikely to be 

available in the initial spread of the epidemic. Nevertheless, our augmented model will 

allow estimation of the effect of biased sampling itself in predicting disease dynamics, 

and underlines the importance of unbiased sampling to predict estimates reflecting 

reality. 

 

Testing Bias Influence True Fatality Rates and Case Fatality Rates in Time-Dependent 

Manner 
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Since the initial report of case fatality rate of 3.8% from Wuhan China by WHO, there has 

been a substantial variance in the listed death rate among nations. Case fatality rate is 

calculated as the ratio of number of deaths measured and number of positive cases2. Since 

death is a lag indicator, case fatality rate would asymptotically reach the more 

conservative death rate, which is the ratio of deaths and a sum of those who died or 

recovered. We, therefore, considered the latter death rate and tested the effect of sampling 

bias upon its estimation. We found that sampling bias can linearly affect the estimation 

of death rate (Figure 3A). If the fraction of population with high manifestation of disease 

is high (and therefore the inherent bias of sampling is low), then trivially the effect of bias 

is somewhat mitigated (Figure 3B). Our data strongly underlines the importance of 

incorporating bias in testing itself as a key parameter to model epidemic dynamics, 

because key predicted metrics, including death rate, are substantially affected by these 

biases.  

 

We then tested how testing bias would affect the case fatality rate (ratio of dead to the 

number of positive cases). We found that sampling bias indeed resulted in large effects 

in CFR estimates, but crucially, these effects reduce as the infection reaches its peak, and 

then amplify as the infections subside within the population (Figure 3C). When 

compared to the true death rate, CFR initially underestimates the death rate, and then 

overestimates the rate in a bias dependent manner. CFR, as is calculated here, has two 

opposing biases inherent in it. In the initial part of the pandemic, and for testing biases 

below a threshold, it underestimates the true death rate because the growth of the 

infections happens earlier than the growth in the number of death. In other words, while 

the pandemic is growing, the number of deaths always lag, and the number of infections 

at a particular time are some multiplicative factor larger than the corresponding 

infections that existed when the currently dead were infected. This leads to estimation of 

an overly optimistic CFR. On the other hand, for later and waning stages of the epidemic, 

and the testing biases being greater than a threshold, the CFR leads to an overly 

pessimistic number compared to the real death rate. This is due to a greater prevalence 

of the severely ill patients counted among the cases. Indeed, if the fraction of population 

with a high disease manifestation (H) are changed and correspondingly the death rate 

adjusted to keep the true death rate the same, then CFR can underestimate the true death 

rate for a longer duration of the pandemic (Figure 3D). The direction of the bias in the 

CFR depends on the pandemic kinetics (β, γ) and the testing bias. 

 

However, if CFR were to be measured using serological tests, thereby counting the 

recovered population as being previously infected, the effect of bias on estimation of 
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fatality rate is mitigated (Figure 3E-F). Crucially, our calculations argue that for all 

metrics of naïve estimation of fatality rates, contribution of testing bias is substantial, and 

attempts made to measure the bias itself, and be accounted for.   

 

Randomized Unbiased Serological Sampling of Widely Infected Population is 

Necessary to Determine True Fatality Rates 

Our augmented model demonstrated that sampling bias could play a significant role in the direct 

estimates of both the infection and the fatality rates, and may partially explain the large variance 

across the death rates reported across countries, as well as in epidemic prediction models. We 

therefore propose that a random sampling of a population that has suffered a large infection load 

should be utilized to estimate the true infection, recovery, and fatality rates. In addition, as 

serological tests are becoming available to detect the antibodies against SARS-CoV-2 specific 

antigen, it is possible to identify individuals who have developed immunity against the virus but 

may not necessarily test positive owing to reduced viral load. We believe it is necessary to test if 

the wider population in an area with high death numbers is a consequence of (i) a wider spread 

of the disease and a smaller death rate, or (ii) a larger death rate in a smaller subpopulation that 

has contracted the virus. In order to minimize the variance of the infection death rate, this random 

testing is suggested to be conducted among a population wherein the infection is understood to 

have spread widely.  

We propose using census, tax ID, or driving licenses in a given area as an unbiased identifier of 

a sampling set, upon which the serological test and PCR (or pooled next generation sequencing-

NGS based tests) could be conducted. We calculated the sample sizes required to gain an accurate 

estimate of the community infection rates and the infection fatality rates. A random selection of 

individuals will provide estimates without systematic biases; therefore, the appropriate measure 

of accuracy need only be concerned with the variance of the estimates. In the following, we have 

chosen to frame this in terms of mostly confidence intervals and hypothesis testing. 

An initial calculation expectedly suggested that with low infection rates, attaining a 5% error of 

estimation for the infection rate would require a moderate sample size. In contrast, if the real 

infection rate is higher (closer to 50%), expectedly, a smaller sample set will be sufficient for an 

accurate estimate of infection rate (Figure 4). Therefore, in the present scenario, an example of an 

ideal location where such tests could be performed with a limited number of sample size 

(approximately 10,000) is New York City, where the deaths have rapidly climbed up in the last 

week of March 2020.  

 

Estimating the mortality or infection fatality rate requires another probability to be multiplied to 

the estimate of infection rate within a sample population. A calculation of the sample size 

required for a 95% confidence interval indicates that even for a potentially highly infected 
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population, like in NYC, it may require a very large sample size to accurately determine the true 

fatality rate (Figure 5A). This may be one reason why countries have resorted to large sampling 

to obtain data for true fatality rate. However, biased and non-random sampling renders these 

data difficult to interpret to estimate the fatality rates.  

We therefore propose to instead test the hypotheses that the true fatality rate is higher than a 

given value, which would be rejected if the upper limit of the 95% confidence interval is lower 

than the said value. Calculating these sample sizes with the statistically significant 95% 

confidence interval, we found that a relatively much smaller sample size would be sufficient to 

estimate if the true fatality rate is below or higher than a given percentage (Figure 5B). Our 

calculations indicate that for a sample with 50% infection rate, a sample size of 1,000 may be 

sufficient to identify if fatalities are much lower than 1% , while for a sample with 25% infection 

rate, it may be below 10,000 — a logistically achievable size to determine a crucial parameter.   

 

Continuous Sampling of a Selected Cohort can Provide Useful Dynamics on 

Acquirement of Immunity 

The availability of a serological test, if applied using a random and unbiased sampling strategy 

could allow the identification of a key subset of people who have developed immunity, but do 

not carry the infectious disease burden. However, it is usually not possible to have antibody tests 

available at the onset of a disease, and a rapidly spreading pandemic may make it difficult to gear 

policies based on an accurate assessment of the development of herd immunity. In contrast, the 

recent development of genomic amplification or sequencing technologies has made it possible to 

prepare rapidly deployable tests to assess active infectious loads. We therefore propose to use a 

continuous sampling of a representative unbiased cohort on a weekly basis to determine the 

initial onset of infection, the rate of its spread, development of immunity, and eventually the 

ensuing aftermath of the infection. Indeed, as we showed, for very small infection rate, a larger 

sample may be required. However, this concern is easily addressable by pooled sequencing 

(NGS), which can be used to determine rare onset, mutagenesis, and characterization of 

infections13-15, and if sufficient signal for infection is found, then the continuous sampling be used 

for that cohort. The dynamics of readout (of active viral load) in a fixed sample set will allow an 

accurate estimation of the development of immunity and its dynamics in a given population.  

DISCUSSION 

The wide, and constantly updated, estimates of key metrics of the disease, including fatality and 

recovery rates associated with SARS-COV-2 raise important  questions about the quality of our 

public health scientific inquiry. Additionally, the effects of  the public health and economic 

policies adopted around the world on the socio-economically and politically vulnerable sections 

of the population has so far received insufficient attention. This is the most severe global health 

crisis to have inflicted humanity within this generation, although its true impact has still not been 
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understood completely. Indeed, even after months of its spread, there is a large variation in the 

estimate of infection, recovery, and fatality rates. Crucially, an accurate estimate of the true 

dynamics and infection, recovery, and fatality rates is necessary for the scientific inquiry into the 

disease from a systems perspective, operations planning and to advocate for an apt public health 

policy. We show that direct estimates of these parameters  lack in this respect methodologically. 

Testing of the general population has been justifiably biased towards symptomatic patients, since 

it is driven by the desire to identify, care for, or safely isolate vulnerable populations rather than 

to estimate accurate metrics. This has resulted in the biased sampling that is not perfectly suited 

for modeling of the epidemic and calculation of key metrics. 

In this work, we attempted to systematically model this crucial issue by incorporating the testing 

bias within the compartmental model of epidemic dynamics. Our model also includes tests for 

active viral load, as well as for those who have developed immunity, along with the sampling 

bias in testing. We believe that our proposed augmentation not only provides a systematic basis 

to ascertain the effect of testing policies in estimates of epidemic dynamics, but also demonstrates 

that biased sampling may substantially influence epidemic projections if metrics are naïvely 

calculated only reported case numbers.   

Another problem that we demonstrate with the directly calculated case fatality rates is that the 

counts of deaths lag the infection rates, and therefore while the pandemic is growing, the case 

fatality rates underestimate the infection fatality rates. While the bias introduced due to this lag 

is in the opposite direction to that introduced by the sampling bias, the result only makes the 

situation worse. In terms of statistical theory, the case fatality rate is a large variance, biased 

estimate with an unknown direction of bias. Case fatality rate estimates calculated for countries 

with proportionately very extensive testing such as Iceland have been optimistically cited as the 

true infection fatality rates. However, as some sources of systematic errors are mitigated in 

extensive testing, the effect of the lagging death counts will proportionately become more 

important. Therefore, until we arrive towards the end of the pandemic, these optimistic case 

fatality rates may be more optimistic than the reality. 

Although much data is collected on the number of cases, the ensuing deaths, and those that have 

recovered, the naïve interpretation of fatality and infection rates from non-uniform data across 

countries may be fraught with substantial inherent problems. Therefore, we recommend a 

limited, unbiased, random uniform sampling of population to test hypotheses of fatality rates. 

We also propose a method to continually monitor a static sample set to estimate the onset, and 

dynamics of disease spread, acquired immunity, and ensuing morbidity and fatalities associated 

with an infectious spread. As a recent example, a large number of deaths in New York City could 

be explained either by (i) a high fatality rate in a small population contracting the virus, or (ii) a 

rapid spread of the virus which has resulted in large number of people to develop immunity with 

a smaller percentage succumbing to the viral infection. In order to distinguish between the two 

widely varying scenarios, the most direct method with the least amount of statistical 

assumptions, would be to serologically test a limited, random sample of individuals. This should 
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occur in addition to any surveillance methods currently being employed that are independently 

needed for targeted medical care and public health interventions.  

 

METHODS 

SIRD model with disease stratification into high and low symptomatic populations 

First, we augment the canonical SIRD model by stratifying the infected population into high (H) 

and low (L) symptom populations. The differential equations for disease progression can be 

written as 

𝑑𝑆

𝑑𝑡
= −𝛽

𝑆(𝐻 + 𝐿)

𝑁
𝑑𝐻

𝑑𝑡
= 𝛽𝑞

𝑆(𝐻 + 𝐿)

𝑁
− 𝛾𝐼

𝑑𝐿

𝑑𝑡
= 𝛽(1 − 𝑞)

𝑆(𝐻 + 𝐿)

𝑁
− 𝛾𝐴

𝑑𝑅

𝑑𝑡
= 𝛾((1 − 𝑓)𝐻 + 𝐿)

𝑑𝐷

𝑑𝑡
= 𝑓𝛾𝐻

 

where 𝑆 stands for the susceptible population, 𝑅 for the recovered population, 𝐷 for dead, and 

𝐻 + 𝐿 for the total infections. 𝛽 is, according to convention the infection rate constant, and 𝛾 the 

recovery rate constant, 0 ≤ 𝑞 ≤ 1, is the fraction of infections that develop the 𝐻 manifestation of 

the disease, and 0 ≤ 𝑓 ≤ 1 is the fraction of the 𝐻 disease population that dies from it. 

Augmented SIRD model with testing 

We go one step further that model the testing for the infection conducted as part of a surveillance 

program, under the following assumptions: 

1. Both uninfected and infected individuals can be tested in a surveillance program, with different 

probabilities. 

2. The amount of surveillance testing capacity is limited to 𝑇 tests per unit time (day). 

3. Uninfected people who are tested, and test negative aren’t tested again, unless they show significant 

symptoms (𝐻) at some point later. 

4. Once an individual has tested positive, they are a confirmed case, and any further testing etc. as part 

of the care program is not counted in this model since such testing will not change the confirmed case 

numbers, and isn’t assumed to come from the surveillance testing capacity. 

In total, we have the following states 

1. 𝑆𝑈, the untested susceptible population, 
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2. 𝐻𝑈, the untested infected highly symptomatic, 

3. 𝐿𝑈, the untested infected with none or low levels of symptoms, 

4. 𝑅𝑈, the untested recovered population, 

5. 𝐷𝑈, the population that died from the disease without being tested 

6. 𝑆𝑇𝑛, the susceptible population that has been tested, and obviously tested negative, 

7. 𝐻𝑇𝑛, the highly symptomatic infected population that was earlier tested negative during the 

susceptible phase (but might be tested in the future during infection) 

8. 𝐿𝑇𝑛, the low symptom population that was only tested while susceptible, and therefore tested 

negative at that time, 

9. 𝐻𝑇𝑝, the high symptom infected population that was tested while in the infected stage, and hence 

tested positive, 

10. 𝐿𝑇𝑝, the low symptom infected population that was tested while in the infected stage, and hence tested 

positive, 

11. 𝑅𝑇𝑛, the recovered population that was tested in only the susceptible or recovered stages, and hence 

tested negative, 

12. 𝑅𝑇𝑝, the recovered population that was tested in the infected population, and hence tested positive, 

13. 𝐷𝑇𝑛, the deaths due to the epidemic, that were tested negative, and 

14. 𝐷𝑇𝑝, the deaths due to the epidemic, that were tested positive. 

The dynamics from the state transitions is written as 
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𝑑𝑆𝑈
𝑑𝑡

= −𝛽
𝑆𝑈(𝐿𝑈 + 𝐻𝑈 + 𝐿𝑇𝑛 + 𝐻𝑇𝑛 + 𝐿𝑇𝑝 + 𝐻𝑇𝑝)

𝑁
− min (𝑆𝑈,

𝑆𝑈𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
)

𝑑𝐻𝑈

𝑑𝑡
= 𝑞𝛽

𝑆𝑈(𝐿𝑈 + 𝐻𝑈 + 𝐿𝑇𝑛 +𝐻𝑇𝑛 + 𝐿𝑇𝑝 + 𝐻𝑇𝑝)

𝑁
−

min (𝐻𝑈 ,
𝑏𝐻𝑈𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
) − 𝛾𝐻𝑈

𝑑𝐿𝑈
𝑑𝑡

= (1 − 𝑞)𝛽
𝑆𝑈(𝐿𝑈 + 𝐻𝑈 + 𝐿𝑇𝑛 + 𝐻𝑇𝑛 + 𝐿𝑇𝑝 + 𝐻𝑇𝑝)

𝑁
−

min (𝐿𝑈,
𝐿𝑈𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
) − 𝛾𝐿𝑈

𝑑𝑅𝑈

𝑑𝑡
= 𝛾((1 − 𝑓)𝐻𝑈 + 𝐿𝑈) − min (𝑅𝑈,

𝑅𝑈𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 +𝐻𝑇𝑛)
)

𝑑𝐷𝑈

𝑑𝑡
= 𝛾𝑓𝐻𝑈

𝑑𝑆𝑇𝑛
𝑑𝑡

= −𝛽
𝑆𝑇𝑛(𝐿𝑈 + 𝐻𝑈 + 𝐴𝑇𝑛 + 𝐻𝑇𝑛 + 𝐿𝑇𝑝 +𝐻𝑇𝑝)

𝑁
+ min (𝑆𝑈 ,

𝑆𝑈𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
)

𝑑𝐻𝑇𝑛

𝑑𝑡
= 𝑞𝛽

𝑆𝑇𝑛(𝐿𝑈 +𝐻𝑈 + 𝐿𝑇𝑛 +𝐻𝑇𝑛 + 𝐿𝑇𝑝 + 𝐻𝑇𝑝)

𝑁
−

min (𝐻𝑇𝑛 ,
𝑏𝐻𝑇𝑛𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
) − 𝛾ℎ𝑇𝑛

𝑑𝐿𝑇𝑛
𝑑𝑡

= (1 − 𝑞)𝛽
𝑆𝑇𝑛(𝐿𝑈 + 𝐻𝑈 + 𝐿𝑇𝑛 +𝐻𝑇𝑛 + 𝐿𝑇𝑝 + 𝐻𝑇𝑝)

𝑁
− 𝛾𝐿𝑇𝑛

𝑑𝐻𝑇𝑝

𝑑𝑡
= min (𝐻𝑈 + 𝐻𝑇𝑛,

𝑏(𝐻𝑈 + 𝐻𝑇𝑛)𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
) − 𝛾𝐻𝑇𝑝

𝑑𝐿𝑇𝑝

𝑑𝑡
= min (𝐿𝑈 ,

𝐿𝑈𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
) − 𝛾𝐿𝑇𝑝

𝑑𝑅𝑇𝑛

𝑑𝑡
= 𝛾((1 − 𝑓)𝐻𝑇𝑛 + 𝐿𝑇𝑛) + min (𝑅𝑈,

𝑅𝑈𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
)

𝑑𝑅𝑇𝑝

𝑑𝑡
= 𝛾((1 − 𝑓)𝐻𝑇𝑝 + 𝐿𝑇𝑝)

𝑑𝐷𝑇𝑛

𝑑𝑡
= 𝑓𝛾𝐻𝑇𝑛

𝑑𝐷𝑇𝑝

𝑑𝑡
= 𝑓𝛾𝐻𝑇𝑝

 

In addition, the cumulative number of positive and negative tests can be calculated as 

𝑑𝑇𝑝

𝑑𝑡
= min (𝐻𝑈 + 𝐻𝑇𝑛 ,

𝑏(𝐻𝑈 + 𝐻𝑇𝑛)𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
) +

min (𝐿𝑈 ,
𝐿𝑈𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
)

𝑑𝑇𝑛

𝑑𝑡
= min (𝑆𝑈 + 𝑅𝑈,

(𝑆𝑈 + 𝑅𝑈)𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
)

 

In case serological tests are done, the cumulative number of positive and negative tests can be 

calculated as 
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𝑑𝑇𝑝Sero

𝑑𝑡
= min (𝐻𝑈 +𝐻𝑇𝑛 ,

𝑏(𝐻𝑈 +𝐻𝑇𝑛)𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 +𝐻𝑇𝑛)
) +

min (𝐿𝑈 + 𝑅𝑈,
(𝐿𝑈 + 𝑅𝑈)𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
)

𝑑𝑇𝑛Sero

𝑑𝑡
= min (𝑆𝑈 ,

𝑆𝑈𝑇

(𝑆𝑈 + 𝐿𝑈 + 𝑅𝑈) + 𝑏(𝐻𝑈 + 𝐻𝑇𝑛)
)

 

Estimates of infection and death rates 

Using the testing results, the conventional estimate of the infection rate as currently being 

reported would simply be the fraction of positive test cases found in a time period 

Infection Ratê =
𝛥𝑇𝑝

𝛥𝑇𝑝 + 𝛥𝑇𝑛
, 

and the cumulative death rate estimate would be the calculated from the number of people who 

died from the pandemic versus those recovered 

Death Ratê =
𝐷𝑇𝑝

𝐷𝑇𝑝 + 𝑅𝑇𝑝

. 

The case fatality rate, as it is being currently being defined is 

CFR =
𝐷𝑇𝑝

𝑇𝑝
, 

which would change to 

CFRSero =
𝐷𝑇𝑝

𝑇𝑝Sero
 

if we use serological testing. 

Instead, the true infection rate in the population would simply be the fraction of the population 

with any kind of infection 

True Infection Rate =
𝐿 + 𝐻

𝑁
, 

and the true death rate would be simply the total number of people who died of the disease versus 

the total that died or recovered 

True Death Rate =
𝐷

𝐷 + 𝑅
. 
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Calculating the variance of estimates for unbiased random sampling 

 

Suppose the fraction of population that has contracted SARS-CoV-2 detectable by a serological 

test (the infection rate) is 𝑝. In addition, assume that within those with SARS-CoV-2, a fraction 𝑚 

have died or die within the study time-frame. Therefore, in sampling a random sample of 𝑆 

samples, we expect to find 𝑆𝑝 positive cases, and 𝑆𝑝𝑚 deaths. In terms of the sampled numbers, 

if we find 𝐶 positive cases out of a total 𝑆 sample size and 𝐷 deaths, the estimates of the infection 

rate will be 𝑝 = 𝐶/𝑆 and the estimate of mortality rate 𝑚 = 𝐷/𝐶. These are unbiased estimates, 

and their conservative, guaranteed confidence interval can be calculated from the Clopper-

Pearson interval16.  
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FIGURE LEGENDS 

 

 

Figure 1. An Augmented Compartment Model to Predict Epidemic Dynamics with Testing 

Bias. (A) Regression of Case fatality rate, CFR (calculated as percentage of death in positively 

identified cases per country) against the percentage of positive cases identified among all tested 

per country show a linear regression; Each dot corresponds to a different country; Data obtained 

from ourworldindata for April 18, 2020; Blue line shows the fitted regression curve; Shaded area 

show the 95% confidence interval; R2 = 0.3567, p-value = 5.9e-6. (B) The basic SIRD compartmental 

model commonly used to model epidemic dynamics. Ordinary differential equations describe the 

movement of the population through the different compartments representing the susceptible, 

infected, recovered, and dead stages. The parameters are the rate constants for each term 

representing the transitions in the differential equation. (C) The augmented SIRD model by 

stratification of the infected population into H and L referring to high, and low manifestation of 
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disease symptoms respectively; The factor q is the fraction of infected within H; We assume that 

high manifestation of disease leads to death in a fraction f of the individuals. (D) A simplified 

representation of the model of the testing policy; T tests are available per unit time; Untested alive 

individuals (U) are randomly selected in proportion to their numbers, but patients in H are 

selected with an increased bias b. Further compartments arising due to testing and movement at 

different stages are omitted here for clarity; Detailed equations in the Methods section. (E) 

Fraction f and q determine the true death rate; Two values with similar death rates chosen for 

simulations are marked.  

 

 

Figure 2. Influence of testing (sampling) bias for symptomatic patients is high for estimation 

of infection rate measured by active-viral tests, but mitigated in serological tests for acquired 

immunity. (A) The infection rates (fraction of population with an active infection) estimated from 

PCR (or sequencing) based strategy to measure active viral load; Red curve shows the true 

infection rate; Estimation of infection rates with different biases for H-compartment patients 

(those with higher disease manifestation) shown in green-black lines; Also shown are fractions 

calculated in equations. (B) Estimation of contraction rates (fraction of population that has 

contracted the virus at a previous time, are either infected or recovered) from a serological test; 

Red line is true contraction rate; Green-black lines are estimated contraction rates with different 

sampling biases for patients with higher disease manifestation.  
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Figure 3. Estimates of Fatality Rates are influenced by biased sampling of patients in a disease 

manifestation dependent manner. (A-B) Estimates of death rate (percentage of fatalities within 

confirmed recovered and dead patients) from a biased sampling strategy for patients with high 

disease manifestation at different fractions resulting in similar true death rates: (A) 5% of the 

infected population with 15% death rate, and (B) 50% of the infected population with 2% death 

rate; Red lines refer to true death rate and green-black lines refer to biased estimates of death 

rates. (C-D) Estimates of case fatality rate (percentage of confirmed fatalities within positively 

tested population) from a biased sampling strategy as in A, and B for different fractions of 

population in H and L manifestation, as in A, and B. (E-F) Estimates of case fatality rate measured 

with serological testing from a biased sampling strategy as in A, and B for different fraction of 

populations in H and L manifestation, as in A, and B.  
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Figure 4. Randomized Testing Strategy for estimation of SARS-CoV-2 infection rate in an area 

with a high infection rate. (A) The uncertainty (in terms of the 95% confidence interval) in the 

estimate of the fraction of population with SARS-COV-2 (infection rate) with different sample 

sizes. (B) The sample size needed for infection rate 95% confidence interval to be 5%. 
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Figure 5. Randomized Testing Strategy for estimation of fatalities, and for estimate of 

death rate below a given percentage in areas with different infection and fatality rate.  

(A) 95% Confidence Interval size for the death rate given a sample size (S, x-axis), infection rate 

(p, line colors), and the real death rate (m, subplot panel). (B) Sample sizes needed to reject 

hypotheses that death rate > than 1, 2, 4, or 5% of the infected population.  
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