Abstract
Background Rotavirus incidence remains relatively high in low-income countries (LICs) compared to high-income countries (HICs) after vaccine introduction. Ghana introduced monovalent rotavirus vaccine in April 2012 and despite the high coverage, vaccine performance has been modest compared to developed countries. The predictors of low vaccine effectiveness in LICs are poorly understood, and the drivers of subnational heterogeneity in rotavirus vaccine impact are unknown.
Methods We used mathematical models to investigate variations in rotavirus incidence in children <5 years old in Ghana. We fit models to surveillance and case-control data from three different hospitals: Korle-Bu Teaching Hospital in Accra, Komfo Anokye Teaching Hospital in Kumasi, and War Memorial Hospital in Navrongo. The models were fitted to both pre- and post-vaccine data to estimate parameters describing the transmission rate, waning of maternal immunity, and vaccine response rate.
Results The seasonal pattern and age distribution of rotavirus cases varied among the three study sites in Ghana. Our model was able to capture the spatio-temporal variations in rotavirus incidence across the three sites and showed good agreement with the age distribution of observed cases. The rotavirus transmission rate was highest in Accra and lowest in Navrongo, while the estimated duration of maternal immunity was longer (∼5 months) in Accra and Kumasi and shorter (∼3 months) in Navrongo. The proportion of infants who responded to the vaccine was estimated to be high in Accra and Kumasi and low in Navrongo.
Conclusions Rotavirus vaccine impact varies within Ghana. A low vaccine response rate was estimated for Navrongo, where rotavirus is highly seasonal and incidence limited to a few months of the year. Our findings highlight the need to further explore the relationship between rotavirus seasonality, maternal immunity, and vaccine response rate to determine how they influence vaccine effectiveness and to develop strategies to improve vaccine impact.
Highlights
Marked variations in rotavirus incidence and vaccine impact within Ghana
Similar rotavirus seasonality before and after vaccine introduction
A shift in age distribution occurred following vaccine introduction
The models provide satisfactory predictions of rotavirus outbreaks and vaccine impact
Competing Interest Statement
VEP has received reimbursement for travel expenses from Merck to attend a Scientific Input Engagement unrelated to the subject of this paper
Funding Statement
The work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health [grant number R01AI112970 to V.E.P.].
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data that support the findings of this study are available on request from the corresponding author, EOA