Abstract
Hematoma expansion is a consistent predictor of poor neurological outcome and mortality after spontaneous intracerebral hemorrhage (ICH). An incomplete understanding of its biophysiology has limited early preventative intervention. Transport-based morphometry (TBM) is a mathematical modeling technique that uses a physically meaningful metric to quantify and visualize discriminating image features that are not readily perceptible to the human eye. We hypothesized that TBM could discover relationships between hematoma morphology on initial Non-Contrast Computed Tomography (NCCT) and hematoma expansion. 170 spontaneous ICH patients enrolled in the multi-center international Virtual International Trials of Stroke Archive (VISTA-ICH) with time-series NCCT data were used for model derivation. Its performance was assessed on a test dataset of 170 patients from the Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) study. A unique transport-based representation was produced from each presentation NCCT hematoma image to identify morphological features of expansion. The principal hematoma features identified by TBM were larger size, density heterogeneity, shape irregularity and peripheral density distribution. These were consistent with clinician-identified features of hematoma expansion, corroborating the hypothesis that morphological characteristics of the hematoma promote future growth. Incorporating these traits into a v achieved a AUROC of 0.71 for quantifying 24-hour hematoma expansion risk in the test dataset. This outperformed existing clinician protocols and alternate machine learning methods, suggesting that TBM detected features with improved precision than by visual inspection alone. This pre-clinical study presents a quantitative and interpretable method for discovery and visualization of NCCT biomarkers of hematoma expansion in ICH patients. Because TBM has a direct physical meaning, its modeling of NCCT hematoma features can inform hypotheses for hematoma expansion mechanisms. It has potential future application as a clinical risk stratification tool.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
↵* VISTA-ICH Steering Committee: DF Hanley (Chair), K Butcher, S Davis, B Gregson, KR Lees, P Lyden, S Mayer, K Muir, and T Steiner
Addition of an external validation dataset, revised results, discussion and conclusions
Data availability
Data used for his manuscript is available from the corresponding author upon reasonable request.