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Abstract 

Hematoma expansion is a consistent predictor of poor neurological outcome and mortality after 

spontaneous intracerebral hemorrhage (ICH). An incomplete understanding of its biophysiology 

has limited early preventative intervention. Transport-based morphometry (TBM) is a 

mathematical modeling technique that uses a physically meaningful metric to quantify and 

visualize discriminating image features that are not readily perceptible to the human eye. We 

hypothesized that TBM could discover relationships between hematoma morphology on initial 

Non-Contrast Computed Tomography (NCCT) and hematoma expansion. 170 spontaneous ICH 

patients enrolled in the multi-center international Virtual International Trials of Stroke Archive 

(VISTA-ICH) with time-series NCCT data were used for model derivation. Its performance was 

assessed on a test dataset of 170 patients from the Ethnic/Racial Variations of Intracerebral 

Hemorrhage (ERICH) study. A unique transport-based representation was produced from each 

presentation NCCT hematoma image to identify morphological features of expansion. The 

principal hematoma features identified by TBM were larger size, density heterogeneity, shape 

irregularity and peripheral density distribution. These were consistent with clinician-identified 

features of hematoma expansion, corroborating the hypothesis that morphological 

characteristics of the hematoma promote future growth. Incorporating these traits into a v 

achieved a AUROC of 0.71 for quantifying 24-hour hematoma expansion risk in the test 

dataset. This outperformed existing clinician protocols and alternate machine learning methods, 

suggesting that TBM detected features with improved precision than by visual inspection alone. 

This pre-clinical study presents a quantitative and interpretable method for discovery and 

visualization of NCCT biomarkers of hematoma expansion in ICH patients. Because TBM has 

a direct physical meaning, its modeling of NCCT hematoma features can inform hypotheses for 
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hematoma expansion mechanisms. It has potential future application as a clinical risk 

stratification tool. 

 

Introduction 

Within hours of spontaneous intracerebral hemorrhage (ICH) onset, hematoma expansion 

contributes to mass effect and injury to the surrounding brain.1-3 It is a preventable predictor of 

poor neurological outcome and mortality.1,2 Biophysical hypotheses for hematoma expansion are 

primarily derived from small pathological studies and have not been proven in the clinical 

setting.1,2 Although several non-contrast computed tomography (NCCT) features for hematoma 

expansion have been independently described by clinicians (i.e. swirl sign, blend sign, island 

sign), a quantitative method for analyzing hematoma morphology from NCCT is lacking.7-10  

Recent results demonstrating the benefit to ICH surgical evacuation motivates new approaches to 

enable early detection of hematoma expansion and reduce time-to-intervention in future ICH trial 

designs.4-6 Understanding the relationship between NCCT changes in hematoma morphology and 

the underlying expansion mechanism will be crucial to identifying preventative therapies.3-5 

 

Qualitative NCCT markers of hematoma expansion named by clinicians have been incorporated 

into clinical scoring systems to predict hematoma expansion. However, their use of subjective 

criteria has led to scoring variability.2,5,8-10 Furthermore, use of different terminologies to 

describe similar features has limited our understanding of the relative diagnostic value of each 

feature.2,5,8-10 Deep learning methods for NCCT radiographic marker identification carry 

advantages of being entirely data-driven and automated.6 However, they are also limited by their 
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lack of interpretability and provide little to no consideration of the biophysical processes 

necessary to provide a scientific rationale for their use.12,13 There exists a clear need for 

development of a quantitative and interpretable methodology for NCCT radiographic marker 

identification which could improve our understanding of hematoma expansion.  

 

Transport-based morphometry (TBM) is a quantitative modeling technique that generates a 

three-dimensional representation of the entire information content within an image.7,8 TBM 

subsumes well-established image features used in protocols, while also considering features not 

readily discernible to the human eye.7 Model inversion permits visualization of discriminating 

morphological and spatial information.9 In this pre-clinical study of segmented time-series 

NCCT hematoma images, we hypothesized that transport-based morphometry (TBM) could 

discover relationships between NCCT morphometric features and hematoma expansion. 17-20 

Data from the ICH section of the multicenter Virtual International Trials in Stroke Archive 

(VISTA-ICH) was used to derive the model, and the Ethnic/Racial Variations of Intracerebral 

Hemorrhage (ERICH) study was used for external validation.14-16 We demonstrate that (1) TBM 

model regression can quantify changes in NCCT hematoma morphology to estimate risk of 

expansion, (2) TBM model inversion permits visualization of NCCT features of expansion to 

inform hypotheses for its biophysical mechanisms, and (3) a resulting predictive model for future 

expansion can outperform conventional clinician protocols and machine learning methods.   

 

Results 

Dataset composition 
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Of the 265 spontaneous ICH patients in the VISTA repository with available presentation NCCT 

scans, 95 were excluded (26 for corrupted/unreadable DICOM files, 3 for surgical evacuation, 9 

for infratentorial location, 3 for no 24±6 hour interval NCCT scan and 52 for initial ICH volume 

<7mL). The remaining 170 patients (mean (SD) age 64.08 (12.45) years; 37.6% (n=64) female), 

comprised the derivation (training and internal validation) dataset. In the derivation dataset, the 

mean (SD) and median [IQR] hematoma volumes at presentation were 31.31 (24.06) and 25 [14-

39] mL, respectively. The mean (SD) and median [IQR] hematoma volumes at 24±6 hours were 

39.56 (34.42) and 28 [14-54] mL, respectively. Hematoma expansion was present in 32.9% 

(n=56) patients. Of the 3,000 spontaneous ICH patients in the ERICH study, 1,066 met inclusion 

criteria and were randomly sampled to generate a test (external validation)  dataset of 170 patients, 

(mean (SD) age 61.14 (13.38) years; 29.2% (n=50) female), 20.0% (n=34) Black, 42.9% (n=73) 

Hispanic and 35.3% (n=60) White. In the test dataset, the mean (SD) and median [IQR] hematoma 

volumes at presentation were 25.73 (19.73) and 21 [11-33] mL, respectively. The mean (SD) and 

median [IQR] hematoma volumes at 24±6 hours were 31.59 (24.24) and 26 [12-43] mL, 

respectively. Hematoma expansion was present in 32.9% (n=56) patients. A flow diagram of the 

patient selection process for the derivation and test datasets is shown in eFigure 1. Comparisons of 

baseline demographic and clinical characteristics between the expansion and no expansion 

groups for each of the derivation and test datasets are presented in Table1. 

 

Data preprocessing 

The NCCT preprocessing and segmentation results are shown in Figure 1A-I. Comparisons of 

the native NCCT segmented hematoma images did not reveal a visually discernible difference 

between the expansion (Figure 1J) and no expansion groups (Figure 1K). The intrinsic mean 

template I0µ used for the optimization of the linear optimal transportation framework is shown 
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for the original and location-adjusted datasets in eFigure 2. 

 

TBM model regression quantified 24-hour hematoma growth from NCCT 

In the internal validation cohort of the derivation dataset, the mean correlation co-efficient (CC) 

for the most correlated direction in transport space, w����, between presentation hematoma 

features and 24-hour absolute hematoma volume increase was 0.191 [0.184-0.198], p<0.0001 

for TBM alone. This improved to 0.278 [0.271–0.285]; p<0.0001 after location and clinical 

information were included in the TBM model (eFigure 7). Stepwise optimization results for the 

preliminary hematoma growth prediction models are presented in the Online-only supplement; 

eFigures 7 and 8. When assessed in the test dataset, the final TBM model adjusted for location 

and clinical information quantified 24-hour volume increase from presentation hematoma 

features with a CC of 0.245; p=0.002 (Figure 3A).  

 

TBM predicted 24-hour hematoma expansion from NCCT 

In the internal validation cohort of the derivation dataset, there was a separation of the mean 

probability distributions for the expansion and no expansion groups when projected onto the 

most discriminant direction in transport space w0 (p<0.0001) (eFigure 3A-D). The classifier 

trained on w0 predicted expansion with a mean area under the receiver operating curve (AUROC) 

of 0.643 [0.640-0.648] for TBM alone. This improved to 0.698 [0.695-0.702] when location and 

clinical information were included in the TBM model (eFigure 4A and 4D). The mean accuracy, 

sensitivity and specificity were 67.9% [67.6-68.2%], 51.0% [50.5-51.6%], and 77.6% [77.3-

77.9%], respectively for the clinical information and location-adjusted TBM model. Stepwise 

optimization results for the preliminary expansion prediction models are presented in the Online-
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only supplement; eFigures 3, 4, 5, 6.  

 

When assessed in the test dataset, the final clinical information and location-adjusted TBM 

model achieved a significant separation between the mean probability distributions for the 

expansion and no expansion groups when projected onto w0 (p<0.0001) (Figure 2A). This 

corresponded to an AUROC of 0.705 for discriminating expansion from no expansion (Figure 

2B). In the test dataset, the accuracy, sensitivity and specificity were 70.0%, 73.7% and 63.8%, 

respectively.  

 

TBM discovers interpretable NCCT features of 24-hour hematoma expansion and growth 

In contrast to the native NCCT segmented hematoma images, TBM-generated images 

discovered a visually discernible difference between the expansion and no expansion groups. 

The inverse transformations of the hematoma features projected onto w0 are shown in Figures 

2C and 2D, plotted in units of standard deviations (SD) of the pixel intensity distribution along 

w0. The visible features that discriminated expansion were larger size, elongated shape, 

peripheral density distribution, and density heterogeneity.  

 

TBM-generated images also discovered a visually discernible change in NCCT features 

correlating with increasing 24-hour hematoma growth. The inverse transformations of the 

presentation hematoma features projected onto wcorr are shown in Figure 3B and 3C, plotted in 

units of SD of the pixel intensity distribution along wcorr. The features associated with more 

growth were larger size, peripheral density distribution and density heterogeneity.  
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To objectively assess the significance of the TBM-generated NCCT features of hematoma 

expansion, we measured each feature from the native NCCT images. Hematoma size (p<0.0001), 

density heterogeneity (p<0.0001), elongated shape (p<0.0001) and peripheral density distribution 

(p<0.0001) demonstrated separation of the mean probability distributions between the expansion 

and no expansion groups in the derivation dataset (eFigures 10 and 11).  

 

We then assessed the predictive performance of each TBM-identified NCCT hematoma feature 

of expansion from the native NCCT images. The AUROC for predicting 24-hour hematoma 

expansion was 0.577 for hematoma size, 0.578 for density heterogeneity, 0.529 for elongated 

shape, and 0.560 for peripheral density distribution in the test dataset. AUROC curves for 

predicting 24-hour hematoma expansion from the TBM-identified NCCT image features in the 

derivation and test datasets are presented in eFigure 12. The clinical information and location-

adjusted TBM model outperformed each image feature in predicting 24-hour hematoma 

expansion in both the derivation and test datasets.  

 

Hematoma location independently affects hematoma expansion 

Because hematoma location information improved the performance of the TBM model, we 

assessed its independent effect on expansion. In the internal validation cohort of the derivation 

dataset, there was separation of the mean probability distributions of hematoma location 

between the expansion and no expansion groups when projected onto w0 (p<0.0001) (eFigure 

9C). The mean AUROC for hematoma location discriminating the expansion and no expansion 

groups was 0.600 [0.597-0.603] (eFigure 9A).  
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TBM-generated images discovered visibly discernible hematoma locations discriminating 

expansion. The inverse transformations plotted in unit vectors along w0 in the axial, coronal and 

sagittal planes showed hematomas associated with greater likelihood of expansion to be 

oriented posteriorly, inferiorly and medially towards the thalamus, posterior limb of the internal 

capsule and the atrium of the lateral ventricle (Figure 4). 

 

TBM as an alternative to clinician-based hematoma expansion prediction scores 

We assessed the predictive performance of established clinician-based hematoma expansion 

prediction scores in our datasets. The AUROC for predicting 24-hour hematoma expansion was 

0.643 for BAT, 0.652 for BRAIN, 0.565 for HEAVN, 0.569 for HEP, and 0.602 for the 10-

point score in the test dataset (Figure 5). Comparisons between the TBM model and clinician-

based scores for predicting 24-hour hematoma expansion and 24-hour hematoma growth in the 

derivation dataset are presented in eFigures 13 and 14. The clinical information and location-

adjusted TBM model demonstrated improved performance over clinician-based scoring methods 

for predicting 24-hour hematoma expansion in both the derivation and test datasets.  

 

TBM as an alternate to machine and deep learning methods for hematoma expansion 

prediction 

Alternate machine and deep learning methods for hematoma expansion prediction were trained 

using the derivation dataset, and we assessed their predictive performance in the test dataset. The 

AUROC for predicting 24-hour hematoma expansion was 0.511 for K-nearest neighbors, 0.501 

for support vector machine, 0.535 for logistic regression, and 0.557 for 3D ResNet convolutional 

neural networks in the test dataset (eFigure 14). The clinical information and location-adjusted 

TBM model demonstrated improved performance over alternate machine learning and deep 
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learning methods for predicting 24-hour hematoma expansion in the test dataset.  

 

Discussion 

Hematoma expansion is a consistent predictor of poor neurological outcome and mortality after 

spontaneous ICH.4,10-12 Although early detection of hematoma expansion is paramount to 

implementation of preventative therapies, knowledge of its underlying biophysiological 

processes is lacking.2,13 This has impaired progress towards efficient and reliable methods for 

detecting patients at risk for expansion.5 In this study, we developed a quantitative method for 

investigating NCCT hematoma morphology. Our TBM framework discovered hematoma 

morphological changes associated with expansion and was interpretable through model 

inversion. This novel approach discovers hypotheses for hematoma expansion pathophysiology 

and has the potential to improve its clinical prediction. 

 

We considered normalized Hounsfield Unit (HU) pixel intensity values as relative measurements 

of blood density and applied our transport-based morphometry (TBM) technique to model the 

relative intensity of each pixel in a segmented NCCT hematoma image with reference to a 

template.17-20 Thus, optimal transportation-based modeling of hematoma images provided insight 

into inherent physical phenomena.9,14 When linear models were applied to the resulting transport 

space representations, we found a significant correlation between NCCT hematoma 

morphological changes and 24-hour hematoma growth. Inclusion of clinical variables and spatial 

location achieved further improved performance, resulting in an AUC of 0.71 for predicting 

hematoma expansion. Taken together, our findings suggest that TBM could discriminate 24-hour 
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hematoma expansion from NCCT image features.  

 

One advantage of our method is its interpretability. Feature visualization by TBM provided 

radiographic insight into the process of hematoma expansion.14 The conventional biological 

model for hematoma expansion is the “avalanche effect”, first observed in a pathological study 

from 1971.2 This described the process of secondary mechanical shearing of neighboring vessels 

at the periphery of the hematoma, resulting in successive bleeding. It was corroborated by a more 

recent pathological study that observed hematomas to expand in the perivascular spaces and 

detach branches from surrounding tissue, resulting in secondary bleeding.1 These proposed 

mechanisms of hematoma expansion have not previously been examined in a large real-time 

patient sample. When we inverted our TBM model to generate visualizations of the NCCT 

features correlating most with expansion, we discovered morphological characteristics of 

expansion that were not visibly discernible on the native images. Notably, we observed 

preferential distribution of density towards the periphery of the expanding hematoma, which may 

be consistent with involvement of secondary circumferential vessels. Density heterogeneity 

further suggested that the hematoma expanded from bleeding at different times and locations.  

 

While the affected location may harbor characteristic structural properties that facilitate 

expansion, there is conflicting evidence regarding location(s) with the propensity for expansion.15 

Hematoma location has not yet been included as a potential modifier in expansion prediction 

scores.5,12,16 We defined location from the center of the hematoma, finding it to be a significant 

independent predictor of expansion that improved the TBM model’s performance. The location 

most discriminating expansion was oriented towards the thalamus, posterior limb of the internal 
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capsule and atrium of the lateral ventricle. This correlated with the orientation of the perivascular 

spaces and the proposed pathological mechanism of blood product transit via these spaces, 

representing the path of least resistance surrounding the hematoma.17 These findings lend weight 

to the importance of further study into the relationships between NCCT image characteristics and 

the biomechanics of hematoma expansion.  

 

The shape, size and density NCCT characteristics identified by TBM are consistent with those 

previously described by clinicians.18,19 This emphasizes similarities between our TBM model and 

clinician-based interpretation of ICH from NCCT, corroborating their hypothesis that 

morphological characteristics of the hematoma promote future growth.5,18 In contrast to 

clinician-based methods, TBM overcame the subjectivity inherent to qualitative ranking, 

standardized the range of terminologies that have previously been attributed to similar image 

features, and permitted grading of severity. When we measured TBM-identified NCCT image 

features from the native image data, they were statistically significant predictors of expansion but 

each was outperformed by the final TBM model in the test dataset. Similarly, TBM outperformed 

established clinician-based NCCT prediction scores and emerging machine learning models.16,20-

23 By including all information contained within a segmented hematoma image, we propose that 

TBM achieved greater precision and improved generalizability than pre-specified feature 

detection alone.24 Like RAPID-AI for ischemic stroke, further optimization of TBM could lead 

to a reliable and efficient method for hematoma expansion prediction to select patients for timely 

intervention.25,26 

 

Several limitations to this study must be acknowledged. Although we included a representative 
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multi-national population of patients enrolled in ICH clinical trials with standardized time-

series NCCT data, our model derivation cohort was limited by its small sample size of 170 

patients and retrospective design.27 Because we randomly sampled an equivalent-sized external 

validation dataset from the ERICH cohort study, the generalizability of the results are limited 

by the potential for confounding factors inherent to the validation dataset that were not 

accounted for. Future validation studies should investigate larger cohorts and/or matching 

paradigms to account for this limitation prior to drawing conclusions as to the potential clinical 

utility of TBM. The limited density information on NCCT and the small number of patients 

who experienced hematoma expansion in our dataset are likely to have affected the predictive 

strength of the model.7,8,28 Therefore, in spite of dimensionality reduction and external 

validation, our model remains at risk of overfitting. Our AUC of 0.71 in the external validation 

dataset, while superior to alternate clinician-based and machine learning methods, indicates 

moderate predictive performance, and is not yet sufficient for clinical application. In addition, 

the poor performance of alternate machine learning methods in our test dataset warrants further 

investigation for potential sampling errors. Future external validation studies should consider 

case-matched patient sampling, adjustment for confounders, and consideration of multiple 

cross-validation resampling methods prior to defining an optimal model. The relative 

importance of demographic and clinical predictors of hematoma expansion and the methods for 

incorporating these data into predictive modeling also warrants further investigation in future 

studies. Because our expansion definition was not based on clinical outcome, we expect future 

studies to investigate relationships between NCCT hematoma morphology, hematoma 

expansion, and neurological outcome. The derivation dataset utilized input of manually 

segmented images, which can be time consuming and impractical. Future studies should 
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continue to take advantage of fully automated hematoma segmentation methods as they 

undergo validation.29,30 As a promising preclinical study, our TBM model motivates additional 

external validation and prospective studies. These are needed to define its translation potential 

to a real-world clinical setting.  

 

Conclusions 

In this pre-clinical study, we present a quantitative and interpretable approach for discovery of 

non-contrast computed tomography (NCCT) markers of hematoma expansion in spontaneous 

intracerebral hemorrhage patients. Transport-based morphometry discriminated morphological 

characteristics of 24-hour hematoma expansion from presentation NCCT scans. Model inversion 

generated visual interpretations of the features discovered by the model. This quantitative 

approach has the potential to improve hematoma expansion prediction. Its interpretability 

informs mechanisms for hematoma expansion pathophysiology.  

 

Materials and methods 

Study Population 

This analysis of spontaneous ICH patients was prepared according to the Standards for Reporting 

Diagnostic accuracy studies (STARD) guideline.27 Subjects for model derivation were recruited 

from the Virtual International Trials in Stroke Archive (VISTA), which is an international multi-

center collaborative pooled repository of anonymized patient data from randomized clinical trials.27 

Subjects for model external validation were recruited from the Ethnic/Racial Variations of 

Intracerebral Hemorrhage (ERICH) study, which is a multi-center, prospective, case-control study 

of ICH with emphasis on recruitment of .balanced proportions of non-Hispanic white, non-
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Hispanic black and Hispanic ICH cases.31 Inclusion criteria were: (1) age ≥18 years, (2) enrolment 

in neutral non-surgical ICH trials, (3) presentation with CT-proven ICH within 4 hours after 

symptom onset, (4) at least one subsequent CT scan at 24�6 hours after the initial scan, (5) 

available baseline clinical and laboratory data, (6) supratentorial location, and (7) initial volume ≥7 

mL. Initial volume was set to distinguish microbleeds from the range of volumes associated with 

hematoma expansion.32 Exclusion criteria were: (1) primary intraventricular hemorrhage (IVH), 

and (2) ICH related to suspected secondary causes. All required Institutional Review Board 

reviews and approval were completed at the respective institutions. 

 

Clinical information 

Clinical and demographic variables collected included age, sex, self-reported race/ethnicity, 

smoking at presentation (current or not current), previous ICH, anticoagulant use, presentation 

systolic blood pressure (mmHg), international normalized ratio, blood glucose (mg/dL), and time 

from symptom onset to first NCCT scan (min). To account for inter-patient differences in the time 

interval from symptom onset to presentation NCCT, hematoma growth rate was defined as: 

presentation hematoma volume divided by time from symptom onset to first NCCT (mL/min).  

 

NCCT scan preprocessing 

The de-identified NCCT scans at presentation and 24±6 hours after the initial scan were 

transferred in Digital Imaging and Communications in Medicine (DICOM) format to a central 

workstation. NCCT data was pre-processed according to a standard protocol as follows: (1) 3D 

DICOM CT images and their corresponding segmented hematoma regions were converted to a 

3-channel NumPy array; (2) windowing was performed by applying a threshold of 0 to 150 
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Hounsfield Units (HU) to the original gray-scale NCCT image; (3) the region corresponding to 

skull was removed using the Brain Extraction Tool from the open source FMRIB Software 

Library version 6.0 (Analysis Group, FMRIB, Oxford, UK); (4) each NCCT image and its 

corresponding segmented hematoma region were registered to a population-based, high-

resolution NCCT template and re-sized to dimensions of 256 x 256 x 256 with voxel spacings of 

1 x 1 x 1mm using the Symmetric Normalization method from the Advanced Normalization 

Tools in Python package version 0.1.8; (5) the background of each NCCT image and its 

corresponding segmented hematoma region were cropped, reducing the image dimensions to 150 

x 190 x 120; (6) segmented hematoma images located in the left hemisphere were translated 

across midline, so that all hematomas were registered in the right hemisphere; (7) a 3D 

curvature-driven gaussian filter with a step size of 0.125 using a total of 5 steps was applied to 

smooth the segmented hematoma images; (8) each segmented hematoma image was normalized 

so that the sum of its intensities was equal to 1. This protocol was intended to remove differences 

in CT acquisition methods to permit quantitative comparisons of segmented hematoma images. 

All pre-processed images were visually inspected (N.I., neurosurgeon in-training) evaluate for 

skull-stripping and registration errors prior to further analysis. 

 

Hematoma segmentation 

In the derivation dataset, hematoma regions were segmented by two independent raters who were 

blinded to outcomes information (T.R., board-certified neuroradiologist with 20 years of 

experience; K.E.N., neurosurgeon in-training), according to our previously described manual 

method.30 Segmentations were adjudicated by a third rater (H.S., neurosurgeon in-training) and 

efforts were made to achieve a consensus in cases of significant inter-rater differences. In brief, 
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the ICH hyperdensity was traced on each two-dimensional (2D) slice of the 3D DICOM image 

stack, using the open-source software platform 3D Slicer version 4.10.2 (National Institutes of 

Health, Bethesda, MD). Visual inspection, with comparison to the contralateral hemisphere, was 

used to differentiate ICH from IVH, subdural and/or subarachnoid hemorrhage. In the external 

validation dataset, hematoma segmentation was performed according to our previously described 

fully automated convolutional neural network method.30 In brief, the CNN architecture consisted 

of 31 convolutional and 7 pooling layers with a contracting and expanding topology. The 

rectified linear unit was used for all nonlinear functions. 50% dropout and L2 regularization were 

used to prevent overfitting.  

 

Hematoma volumetry 

After NCCT scan preprocessing, ICH volumes at presentation and 24±6 hours were measured 

by multiplying the number of voxels (volumetric pixels) in the segmented hematoma region by 

the volume of each voxel (1x1x1 mm). 

 

3D transport-based morphometry 

The optimal mass transport problem seeks the most efficient way of transforming one 

distribution of mass to another, by minimizing a cost function.33 Transport-based morphometry 

(TBM) performs nonlinear image transformations by solving the continuous linear optimal 

transportation problem. Transforming images from their native domain to a transport domain 

affords three key advantages: (1) it permits discovery of discriminating image features that are 

not readily perceptible to the human eye, (2) it provides a physically meaningful metric, the 

Wasserstein distance, to quantify the relative changes in intensity between two images, and (3) 
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it interpolates between images to generate visual interpretations of the discriminating features 

discovered by the model.  

 
Continuous linear optimal transport 
 
We considered normalized Hounsfield Unit (HU) pixel intensity values as relative measurements 

of blood density and assumed that hematoma expansion occurs as a continuous process of red 

blood cell movement under the effect of unknown biological and physical influences.14 This 

assumption allowed us to quantify the relative movement of blood density from one image to 

another.  Normalizing each image so that the pixel intensities sum to the same total mass allows 

the images to be interpreted as probability measures. In this context, mass is represented as the 

image intensity.34 

 

We consider two images I� and I� defined over their respective domains Ω�and Ω�. Let 

I��represent an image of a segmented hematoma and I���represent the template image. Let �� 

refer to the set of mass preserving functions  	: Ω� � Ω� that rearranges the intensity co-

ordinates of image I� to I�. In other words: 

�� �   	 |  ��� ������� ���	����  �  ����� , ��� ������� � 0�� � Ω��, with ����� 

representing the Jacobian matrix of deformation 	 computed at location �. The optimal mass 

transport function that rearranges the intensities of the two images can be computed by solving 

the minimization problem:  

 

(1) inf���	
 # �	��� $ ����������
��,���

� � %�
����, ��� 

 

The minimizer of the optimal transport problem stated above is known as the squared 
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Wasserstein distance between the densities (images) I� and I�, denoted above as %�
����, ���. We 

utilize the previously described discretization and optimization approach to solve the optimal 

transport map between two digital images.7,24 

 

The Linear Optimal Transport (LOT) framework takes �� to be a fixed reference image.34,35 

Given an image dataset ��, ��, & , �� , it calculates an embedding for image ��  by solving for the 

optimal mass rearrangement problem stated above between ��  and reference ��. Note that given 

an optimal transport map 	�, and with knowledge of the fixed reference ��, the image ��  can be 

recovered by computing (numerically) the inverse of the function (denoted as 	��) and 

computing det *�������+ ���,	�����-� � ����.�. For this reason, we can consider 	� to be a new 

invertible representation (transform) for image �� . We use the notation ��
/ � 	� to denote ��

/  the 

LOT transform of �� . The LOT representation (feature space) is then used to perform statistical 

analysis using standard techniques such as principal component analysis (PCA), linear 

discriminant analysis (LDA), and canonical correlation analysis (CCA). Specifically, analyses 

performed in LOT transform space utilize the so-called LOT distance:  

 

(2) ����
� ���, �	� �� ��� 	 �
� ��� 
 ������ 	 �
����

�
�

Ω�
 

 

Template image 

The linear embedding is calculated with respect to an intrinsic mean template image I0. The 

intrinsic mean template image �� represents the average hematoma appearance for the dataset.  

To estimate a reference given a set of images I� … �I�, �the Euclidean mean image is first 

computed according to: 
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1 � 1/N 5 I�

�

���

 

 

The set of mass preserving mappings that transform each image I� into 1 are computed using the 

minimization procedure described in equation (1). The mass preserving mappings 	� �for 

6 � 1 … �7 are then averaged: 

 

	��� � 1/N 5 	����
�

���

 

 
and used to iteratively update the Euclidean mean template image I�, according to: 
 

������ � � det,���������- µ�	������� 
 
The image I� is then used as the reference for the LOT calculations described above. 
 
 

Model derivation 

Solving the continuous optimal transportation problem results in a unique linearly embedded 

3D mass preserving (MP) map. We obtained the MP map for the segmented presentation NCCT 

hematoma image of each patient. In the derivation cohort, these data were shuffled at random 

and separated into independent training (60%) and internal validation (40%) cohorts for model 

derivation and optimization. To minimize bias in data sampling, this process was repeated 1000 

times to generate 1000 different training and internal validation splits. The dataset composition is 

described further in the Online-only supplement. The code used for model derivation is 

available as an open-source package.36 
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Outcomes 

Outcomes were (1) significant hematoma expansion, defined as ≥6mL increase in hematoma 

volume between the presentation and 24±6-hour NCCT scans, and (2) hematoma growth, defined 

as absolute hematoma volume (mL) increase between the presentation and 24±6 hour NCCT 

scans. Absolute hematoma volume increase (mL) was chosen for its reduced susceptibility to the 

effect of the size of the initial hematoma and stronger association with clinical outcome, than 

relative volume change (%). Significant hematoma expansion was set at 6 mL to reflect the 

threshold most used by established hematoma expansion prediction methods and in ICH clinical 

outcomes studies.3,5,37 For the prediction of neurological outcome, lower hematoma expansion 

thresholds have been found to provide improved sensitivity at the expense of specificity, while 

higher thresholds provide improved specificity at the expense of sensitivity.3,38  

 

Principal components analysis 

Because the dimensionality of the hematoma image features in transport space was much higher 

than the number of data samples, we utilized the principal components analysis (PCA) for 

dimensionality reduction.7,34 PCA is described in detail in the Online-only supplement. We 

retained the top n directions that explained 95% of the variance in the data. This eliminated the 

components with little contribution to the overall variance, reduced the likelihood of overfitting, 

and maintained separation of the training, internal validation and test datasets.  

 

NCCT features discriminating hematoma expansion 

To assess the relationship between presentation NCCT hematoma image features and 24-hour 

hematoma expansion, we used the penalized linear discriminant analysis (pLDA) method.24 
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Penalized Linear Discriminant Analysis (PLDA) is a modification of the Fisher linear 

discriminant analysis, described for morphometric studies of living tissues.14 This is described in 

detail in the Online-only supplement.  

 

We dichotomized patients into expansion and no expansion groups by the definition of �6mL 

and <6mL increase in hematoma volume from the presentation to the 24-hour NCCT scan.3,5,37 

We retained the top pLDA direction 9� that maximally separated the two groups to train a 

classifier to assign patients to the expansion or no expansion groups. The reduced dimensionality 

matrix of the internal validation dataset, :���� was then projected onto 9� such that :9���� �

;������ . The independent �-test was used to assess the degree of separation between the 

histogram means of the expansion and no expansion groups in :9���� and area under the receiver 

operator characteristic curve (AUROC) analyses evaluated the model’s performance. 

Classification accuracy was assessed using sensitivity, specificity, positive predictive value (PPV) 

and negative predictive value (NPV). 

 

Relationship between NCCT features and 24-hour hematoma volume change 

The canonical correlation analysis (CCA) method determined the relationship between 

presentation NCCT hematoma image features and 24-hour change in hematoma volume (mL)7,34  

This is described in detail in the Online-only supplement. We retained the direction 9���� that 

was most correlated with change in hematoma volume (mL) between the presentation and 24±6 

hour NCCT scans. The reduced dimensionality matrix of the internal validation dataset, :���� 

was then projected onto 9���� such that :9���� � ;��������� . The Pearson’s correlation 

coefficient (CC) was used to assess the strength of the relationship between :9���� and 24-hour 
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hematoma volume change (mL). 

 

Effect of location on expansion 

To evaluate the independent effect of hematoma location on expansion, we defined location as 

the x, y and z co-ordinates of the center of each presentation NCCT hematoma image and used 

covariance matrices to represent the initial hematoma location with reference to the center of the 

mass of the template image ��µ. The abovementioned pLDA method and its corresponding 

statistical analyses were used to assess the effect of location for discriminating hematoma 

expansion. 

 

Model optimization 

We hypothesized that including location and clinical information would improve the model’s 

overall performance. To test this, we rendered the MP maps location invariant by translating 

each presentation NCCT hematoma image according to its initial location with reference to the 

center of the mass of the template image ��µ. We compared baseline demographic and clinical 

information between expansion and no expansion groups using the χ�, independent t- or non-

parametric tests, as appropriate. To generate multivariable TBM models for predicting 24-hour 

hematoma expansion and hematoma growth, the x, y and z co-ordinates of the translation 

distances (mm) and the clinical variables for I� represented as vectors v � Av� … v�B , were 

concatenated with the principal components w� of the derivation dataset X!�"�#�and X!$%!, such 

that a� � Aw�|�vB. Included clinical variables were age, sex, INR at presentation, and IVH score. 

The resultant multivariable training and internal validation matrices are given as aX!�"�# �
;"�������� and aX!$%! � ;"�������, respectively. Their performance for discriminating 
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hematoma expansion and predicting future hematoma volume was assessed using 

abovementioned PLDA and CCA methods and their corresponding statistical analyses to obtain 

our final model. 

 

External validation 

An equivalent-sized dataset of 170 patients with a hematoma expansion rate of 25 – 33% was 

estimated to have a power of 0.97 – 0.99 to detect an AUC of 0.7 at the 0.05 significance level, 

given a null AUC of 0.5. For external validation of the model, we randomly sampled eligible 

patients from the ERICH repository to generate a test dataset of 170 patients with a equivalent 

number of hematoma expansion cases as the derivation dataset (n=56). In the test dataset, we 

obtained the MP map for the segmented presentation NCCT hematoma of each patient according 

to abovementioned methods. We performed dimensionality reduction using the abovementioned 

PCA method and adjusted for the relevant co-variates as determined by the optimal multivariable 

TBM model. The trained PLDA and CCA classifiers from the derivation dataset were applied to 

the external validation dataset and the optimal TBM model’s performance for discriminating 

hematoma expansion and predicting future hematoma volume was assessed in the test dataset 

using abovementioned statistical analyses. 

 

Visualization 

The continuous linear optimal transportation approach is generative and any point in the 

transport space can be visualized by inverting its linear embedding. A synthetic image can be 

obtained from a displacement field E by first computing f&�x�� � �x $ v�x� with the following 

equation: 
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det *���
�����+ ��,	'

�����- � �'�.� 

 

where 	'
�� denotes the inverse of the mass-preserving optimal transport map. 

 

We inverted the projections of the derivation dataset onto the principal pLDA direction 9� to 

visualize the presentation NCCT hematoma image features discriminating hematoma expansion 

at 24 hours according to:  

 

9()*+ � :��,-. F σ9� 

 

We also inverted the projections of the derivation dataset onto the most correlated CCA direction 

9���� to visualize the presentation NCCT hematoma image features predicting greater hematoma 

volume increase at 24 hours according to: 

 

9//+ � :��,-. F σ9���� 

 

where 9()*+ represented the direction and magnitude by which hematoma features differed 

between the expansion and no expansion groups, 9//+ represents the direction and magnitude by 

which hematoma image features were distributed according to changes in volume,  :��,-. 

represents the center of :��,-.and H is a length that has units of standard deviations of the 

projected data along 9�or 9����. 
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To visualize the effect of hematoma location on expansion, we translated the inverse 

transformations of the location model according to wo to visualize the x, y and z directions that 

discriminated hematoma expansion. 

 

Hematoma morphometric feature detection 
 
We visually interpreted the inverse transformations to identify the NCCT features of hematoma 

expansion discovered by the 3D-TBM model. To objectively assess the significance of these TBM- 

generated NCCT features of hematoma expansion, they were quantified from the presentation 

NCCT hematoma image data in its native domain. For each subject in the derivation dataset, we 

measured hematoma volume, density heterogeneity, shape eccentricity and density distribution, 

as described in detail in the Online-only supplement. For each NCCT feature, the independent t-

test was used to assess the degree of separation achieved between the expansion and no expansion 

groups and AUROC analyses evaluated their predictive performance with comparison to the 

TBM model.  

 

Comparison to alternate NCCT clinician-based prediction scores 

Established NCCT features identified by clinicians to be associated with hematoma expansion 

were ranked by two independent trained raters who were blinded to outcomes information 

(A.B-G, neurosurgeon in-training; K.E.N., neurosurgeon in-training), as described in the 

Online-only supplement. These features were used in combination with clinical information to 

compute  the existing BAT, BRAIN, HEAVN, NAG, hematoma expansion prediction, and 10-

point clinical hematoma expansion prediction scores in each of the derivation and test 

datasets.16,20-23 The performance of the TBM model in predicting 24-hour expansion with 
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comparison to each clinician-based score was assessed by AUROC analyses in the external 

validation dataset.  

 

Comparison to alternate machine and deep learning methods  

We trained classical machine learning models previously described for NCCT-based 

classification of hematoma expansion including support vector machine, logistic regression and 

k-nearest neighbors in the training dataset. We used PCA for dimensionality reduction prior to 

applying each classifier to the native presentation NCCT images.39,40 ResNet is an emerging deep 

learning alternative for automated prediction of hematoma expansion.41-43 We trained a 3D 

implementation of ResNet convolutional neural networks to classify hematoma expansion in the 

derivation dataset. The performance of the TBM model in predicting 24-hour expansion with 

comparison to each machine and deep learning method was assessed by AUROC analyses in the 

test dataset.  

 

Statistical analyses 

In the derivation dataset, statistical analyses and data visualization were performed 

independently on each of the 1000 cross-validation samples, and the mean results with 

corresponding 95% confidence intervals were obtained. Statistical analyses were performed 

using Stata 15.0 and Matlab R2022a. The p-values were averaged using the Fisher’s method.44 

For both derivation and test datasets, statistical significance was defined as p<0.05. 
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Data availability 

Data used for his manuscript is available from the corresponding author upon reasonable request. 

 

Figure Legends 
 

Figure 1. Example of the preprocessing protocol. (A) All NCCT scans were skull stripped and 

registered to a population-based high resolution NCCT template with dimensions of 256 x 256 

x 256 and voxel spacings of 1 x 1 x 1mm. (B) example of a registered NCCT axial slice at 

presentation and (C) 24 hours in a patient with hematoma expansion. (F) the corresponding 

segmented and normalized hematoma image at presentation (G) and 24-hours for the same 

patient. (D) example of a registered NCCT axial slice at presentation (E) and 24 hours in a 

patient without hematoma expansion. (H) The corresponding normalized hematoma image at 

presentation (I) and 24-hours in the same patient. Examples of segmented presentation non-

contrast computed tomography (NCCT) hematoma images separated into groups of (J) 

hematoma expansion (≥ 6mL hematoma volume increase at the 24 hour interval NCCT scan) 

and (K) no hematoma expansion (<6mL hematoma volume increase at the 24 hour interval 

NCCT scan), demonstrating a lack of visually discernible difference between the two groups. 

Abbreviations: NCCT = non-contrast computed tomography. 

 

Figure 2. Results of the TBM model adjusted for location and clinical information in predicting 

24-hour hematoma volume from the test dataset. (A) Scatter plots showing the relationship 

between the hematoma image features in the test dataset projected onto the most correlated 

direction wcorr in transport space and change in hematoma volume from the presentation to the 

24-hour NCCT scan. (B) Inverse transformations of three two-dimensional axial slice examples 

of the hematoma morphometric features found by the model to be associated with increasing 

growth, shown from left to right of the x-axis (C) Inverse transformations of the hematoma 

morphometric features overlaid onto the axial NCCT scan associated with least growth, left, and 

most growth, right. Abbreviations: NCCT = non-contrast computed tomography, TBM = 

transport-based morphometry, CC = correlation co-efficient σ = standard deviation of the pixel 

intensity distribution along wcorr.  
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Figure 3. Results of the TBM model adjusted for location and clinical information in predicting 

24-hour hematoma expansion from the test dataset. (A) Mean probability distributions of the 

hematoma image features in the test dataset projected onto the most discriminant direction w0 in 

transport space showing the degree of separation between the expansion (red) and no expansion 

(blue) groups by the learned pLDA classifier boundary. (B) AUROC analyses and corresponding 

95% confidence intervals of the performance of the pLDA classifier in the test dataset for (C) 

Inverse transformations of three two-dimensional axial slice examples of the hematoma 

morphometric features found by the model to be associated with increasing likelihood of 

expansion, shown from left to right of the x-axis (D) Inverse transformations of the hematoma 

morphometric features overlaid onto the axial NCCT scan least associated with expansion, left, 

and most associated with expansion, right. Abbreviations: NCCT = non-contrast computed 

tomography, TBM = transport-based morphometry, AUROC = area under the receiver operator 

curve, pLDA = penalized linear discriminant analysis, σ = standard deviation of the pixel 

intensity distribution along w0. 

 

Figure 4. Independent effects of hematoma location as a predictor of 24-hour hematoma 

expansion. Two-dimensional examples of inverse transformations overlaid onto NCCT scans in 

the axial (top row), sagittal (second row) and coronal (third row) planes showing from left to 

right of the x-axis the hematoma morphometric features and location direction found by the TBM 

model to be associated with increasing likelihood of expansion. Abbreviations: NCCT = non-

contrast computed tomography, TBM = transport-based morphometry, σ = standard deviation of 

the pixel intensity distribution along w0.  

 

Figure 5: Comparisons of the performance of existing NCCT hematoma expansion prediction 

scores with comparison to the final TBM model adjusted for location and clinical information in 

test dataset. Hematoma expansion was defined as ≥ 6mL hematoma volume increase from the 

presentation to the 24±6 hour NCCT scan. Abbreviations: AUROC = Area Under the Receiver 

Operator Curve, ROC = Receiver Operator Curve, TBM = transport-based morphometry, NCCT 

= non-contrast computed tomography,  HEAVN = Heavn score, Brain = Brain score, HEP = 

Hematoma expansion prediction score, Pt = 10-point score, BAT = BAT score, TBM = 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2024. ; https://doi.org/10.1101/2024.05.14.24307384doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307384
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

 

transport-based morphometry. 
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