Abstract
Background Early diagnosis and access to resources, support and therapy are critical for improving long-term outcomes for children with autism spectrum disorder (ASD). ASD is typically detected using a case-finding approach based on symptoms and family history, resulting in many delayed or missed diagnoses. While population-based screening would be ideal for early identification, available screening tools have limited accuracy. This study aims to determine whether machine learning models applied to health administrative and birth registry data can identify young children (aged 18 months to 5 years) who are at increased likelihood of developing ASD.
Methods We assembled the study cohort using individually linked maternal-newborn data from the Better Outcomes Registry and Network (BORN) Ontario database. The cohort included all live births in Ontario, Canada between April 1st, 2006, and March 31st, 2018, linked to datasets from Newborn Screening Ontario (NSO), Prenatal Screening Ontario (PSO), and Canadian Institute for Health Information (CIHI) (Discharge Abstract Database (DAD) and National Ambulatory Care Reporting System (NACRS)). The NSO and PSO datasets provided screening biomarker values and outcomes, while DAD and NACRS contained diagnosis codes and intervention codes for mothers and offspring. Extreme Gradient Boosting models and large-scale ensembled Transformer deep learning models were developed to predict ASD diagnosis between 18 and 60 months of age. Leveraging explainable artificial intelligence methods, we determined the impactful factors that contribute to increased likelihood of ASD at both an individual- and population-level.
Results The final study cohort included 703,894 mother-offspring pairs, with 10,964 identified cases of ASD. The best-performing ensemble of Transformer models achieved an area under the receiver operating characteristic curve of 69.6% for predicting ASD diagnosis, a sensitivity of 70.9%, a specificity of 56.9%. We determine that our model can be used to identify an enriched pool of children with the greatest likelihood of developing ASD, demonstrating the feasibility of this approach.
Conclusions This study highlights the feasibility of employing machine learning models and routinely collected health data to systematically identify young children at high likelihood of developing ASD. Ensemble transformer models applied to health administrative and birth registry data offer a promising avenue for universal ASD screening. Such early detection enables targeted and formal assessment for timely diagnosis and early access to resources, support, or therapy.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This project is supported by an anonymous donation to develop the CHEO Precision Child and Youth Mental Health Initiative.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Children's Hospital of Eastern Ontario's Research Ethics Board (REB# 22/06PE) and the ICES Privacy Office (ICES# 2023 901 377 000) gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
↵* kdick{at}bornontario.ca; carmour{at}cheo.on.ca
Funding: This project is supported by an anonymous donation to develop the CHEO Precision Child and Youth Mental Health Initiative.
Article Description: This study examines whether routinely collected health data can determine the likelihood that young children will develop autism spectrum disorder. We developed machine learning models that show promising results, improve upon existing screening tools and highlight the potential for early detection.
Data Availability
All data produced in the present study are available upon reasonable request to ICES.