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Article Description:  
This study examines whether routinely collected health data can determine the likelihood that young children 
will develop autism spectrum disorder. We developed machine learning models that show promising results, 
improve upon existing screening tools and highlight the potential for early detection.   
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Abstract 
 
Background 
Early diagnosis and access to resources, support and therapy are critical for improving long-term outcomes for 
children with autism spectrum disorder (ASD). ASD is typically detected using a case-finding approach based 
on symptoms and family history, resulting in many delayed or missed diagnoses. While population-based 
screening would be ideal for early identification, available screening tools have limited accuracy. This study 
aims to determine whether machine learning models applied to health administrative and birth registry data can 
identify young children (aged 18 months to 5 years) who are at increased likelihood of developing ASD.  
 
Methods 
We assembled the study cohort using individually linked maternal-newborn data from the Better Outcomes 
Registry and Network (BORN) Ontario database. The cohort included all live births in Ontario, Canada between 
April 1st, 2006, and March 31st, 2018, linked to datasets from Newborn Screening Ontario (NSO), Prenatal 
Screening Ontario (PSO), and Canadian Institute for Health Information (CIHI) (Discharge Abstract Database 
(DAD) and National Ambulatory Care Reporting System (NACRS)). The NSO and PSO datasets provided 
screening biomarker values and outcomes, while DAD and NACRS contained diagnosis codes and intervention 
codes for mothers and offspring. Extreme Gradient Boosting models and large-scale ensembled Transformer 
deep learning models were developed to predict ASD diagnosis between 18 and 60 months of age. Leveraging 
explainable artificial intelligence methods, we determined the impactful factors that contribute to increased 
likelihood of ASD at both an individual- and population-level. 
 
Results 
The final study cohort included 703,894 mother-offspring pairs, with 10,964 identified cases of ASD. The best-
performing ensemble of Transformer models achieved an area under the receiver operating characteristic curve 
of 69.6% for predicting ASD diagnosis, a sensitivity of 70.9%, a specificity of 56.9%. We determine that our 
model can be used to identify an enriched pool of children with the greatest likelihood of developing ASD, 
demonstrating the feasibility of this approach.  
 
Conclusions 
This study highlights the feasibility of employing machine learning models and routinely collected health data 
to systematically identify young children at high likelihood of developing ASD. Ensemble transformer models 
applied to health administrative and birth registry data offer a promising avenue for universal ASD screening. 
Such early detection enables targeted and formal assessment for timely diagnosis and early access to resources, 
support, or therapy. 
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1. Introduc0on 
 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 
enduring difficulties in social interaction, speech and nonverbal communication, and repetitive 
behaviors 1. Individuals with ASD may be at increased risk for experiencing stressful and traumatic 
life events, the sequelae of which can negatively impact mental health through the development of 
comorbid psychopathology and/or worsening of the core symptoms of ASD 2,3.	Over the past two 
decades, the prevalence of ASD has notably risen: in 2018, approximately 1 in 44 US children 
were diagnosed with ASD by the age of 8 years 4. Early diagnosis can greatly improve a child’s 
development 5,6 and help them realize their full potential, so they can access support and services 
as soon as possible. Early intensive interventions significantly improve behavioural and social 
outcomes for children with ASD, including cognitive ability, adaptive behaviour, socialization, 
and motor skills 7–9. However, the diagnosis of ASD currently occurs via recognition of 
symptomology that is non-systematic and imprecise, resulting in missed and delayed diagnoses 
10,11. Despite the benefit of early identification of ASD, no universal screening programs exist. 
Prior research has identified a limited number of risk factors associated with ASD (e.g., 
complications at birth, family history of ASD, born to older parents, etc.), and routinely collected 
health data during pregnancy and early childhood offer an opportunity for universal screening and 
early diagnosis, intervention and support. 

Routinely captured medical and health administrative data have been used to develop ASD 
screening algorithms. Rahman et al. combined maternal and paternal electronic medical records 
for 96,138 patients (1,397 ASD cases, 94,741 controls), and showed that models incorporating 
prescribed medications, parental age, and socioeconomic status to identify ASD achieved 
AUROCs of 0.69-0.72 12. Chen et al. used diagnostic and procedural codes from medical claims 
data for 38,576 individuals (12,743 ASD cases, 25,833 controls) to identify ASD in children of 
18, 24, and 30 months old, with AUROCs between 0.71-0.87 13. However, these studies only 
considered a limited number of features. Machine learning (ML) has been used to consider a wide 
range of features for identifying ASD cases, including structural differences in brain magnetic 
resonance imaging (MRI) 14–16, social and behavioural questionnaires 17–22, and gene expression 
profiles 23,24. These ML approaches, while promising, are not ethical or feasible when applied 
across a population. To date, no predictive models for ASD screening have been developed and 
evaluated for population-level screening. 

Deep learning (DL) algorithms are a class of dense artificial neural networks than can 
identify complex predictive features from vast volumes of data. DL models can mine 
comprehensive and granular individual-level records within these datasets and identify features 
that are most strongly associated with the outcome of interest.  Transformer models are a new class 
of DL models that can be trained more efficiently than previous recurrent neural network 
architectures.25,26 By also incorporating an explainable artificial intelligence (XAI) approach when 
training DL models, model developers and end users (e.g., healthcare practitioners) can gain 
insight into how various patient characteristics and other factors contribute to model 
predictions.27,28  In this study, we examine the feasibility of using novel DL models and 
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comprehensive, population-based, and routinely collected health data from Ontario to identify 
young children with elevated risk of developing ASD.  

2. Methods 

We conducted a retrospective, population-based cohort study using data from ICES - an Ontario-
based independent, non-profit research institute whose legal status under Ontario’s health 
information privacy law allows it to collect and analyze health care and demographic data, without 
consent, for health system evaluation and improvement. The Children’s Hospital of Eastern 
Ontario’s Research Ethics Board (REB# 22/06PE) and the ICES Privacy Office (ICES# 2023 901 
377 000) approved this study. We implemented two distinct ML algorithms, Transformer and 
Extreme Gradient Boosting (XGBoost),25,26,29 using individual-level mother-infant health data to 
develop and internally validate a predictive model, leveraging XAI methods to identify features 
associated with developing ASD. An overview of our methodological framework is presented in 
Figure 1.  

2.1 Data Acquisi.on and Outcome Defini.on 
 
This study combines both maternal and offspring characteristics for ASD prediction. Maternal 
characteristics and medical information prior to and during pregnancy were considered with a 
look-back period of two years from the offspring’s date of birth (Figure 1C), A follow-up period 
was applied to collect offspring characteristics, beginning at birth and continuing for five years, 
until ASD was diagnosed, or until the last available data entry in ICES - whichever occurred first. 
All datasets were linked using unique encoded identifiers and analyzed at ICES. Our cohort was 
derived from Better Outcomes Registry & Network (BORN) Ontario:a provincial prescribed 
perinatal, newborn and child registry.1 The cohort consisted of all live births between April 1st, 
2006 – March 31st, 2018, with mother and offspring information linked through the MOMBABY 
dataset at ICES. This cohort was then linked to additional datasets: Newborn Screening Ontario 
(NSO), Prenatal Screening Ontario (PSO), Canadian Institute for Health Information (CIHI)’s 
Discharge Abstract Database (DAD), and CIHI’s National Ambulatory Care Reporting System 
(NACRS). NSO and PSO datasets contain screening biomarker values and outcomes, whereas 
DAD and NACRS consist of International Classification of Diseases (ICD-10) diagnostic codes 
and Canadian Classification of Health Intervention (CCI) intervention codes assigned during 
hospital and/or emergency visits and outpatient surgeries. Pairs were excluded from the study 
cohort using the following criteria: failed linkage to other datasets, invalid death dates, missing 
offspring sex, mothers or offspring ineligible for the Ontario Health Insurance Plan (OHIP) 
coverage during the entire study period, offspring with missing follow-up information, and 
offspring resulting from surrogate pregnancies. Any offspring with missing gestational age or birth 
weight, or with an ASD diagnosis after 5 years of age were also removed. Next, the cohort was 
limited to births between 2012-2018 due to high levels of missingness of key biomarkers included 
in NSO and PSO before 2012. Records with more than 50% missing NSO and PSO data, and those 
without at least one health contact in the DAD/NACRS datasets were removed (Figure 1A).  
 
The primary outcome of interest was diagnosis of ASD between 18 months to 5 years of age. ASD 
status was ascertained by a case-finding algorithm previously validated in Ontario health 
administrative data, which assigns a diagnosis of ASD for all those with at least one F84.x ICD-
10 diagnostic code within their records from a hospital discharge, emergency department visit, or 
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outpatient surgery, or the OHIP diagnostic code 299.x a minimum of 3 times in 3 years)30. This 
algorithm was clinically validated and found to have sensitivity of 50.0%, specificity of 99.6%, 
positive predictive value of 56.6% and a negative predictive value of 99.4%. 30  
 
2.2 Descrip.ve Analyses 
 
Descriptive analyses were conducted to compare characteristics of mother-offspring pairs with an 
ASD diagnosis to those without (Table 1). Continuous variables were described using means (SDs) 
or medians (IQRs). Categorical variables were described using frequencies, percentages and 
standardized mean differences (SMDs). 
  
2.3 Data Preprocessing 
 
Due to the different strategies required for processing temporal and static data from multiple 
sources, datasets were preprocessed separately according to distinct protocols (Figure 1B, details 
in Online Supplement).    
 
2.4 Machine Learning 
 
We designed and evaluated two ML algorithms for the prediction of ASD: BEHRT, a transformer 
developed for the analysis of electronic health records (EHR) 31, and XGBoost a boosted tree-
based ML model 32. BEHRT is a time-series model that analyzes temporal sequences of hospital 
visits and matching sequences comprising the date of the visit and the patient admitted. These 
sequences are embedded into latent representations and combined as the input to transformer 
attention layers, with a final linear layer for prediction of ASD (Figure 1B). To compare 
performance to that of a non-DL baseline method, we transformed temporal variables into static 
representation and predicted ASD with XGBoost. We pretrained BEHRT with masked-language-
modelling and used the architecture from the original publication that delivered the best 
performance 31. For XGBoost, we applied our previous work, and ran large-scale hyperparameter 
tuning experiments leveraging high-performance computing infrastructure 33. See Supplementary 
Appendix for complete details. 
 
The data were divided into training, validation, and test partitions with a respective 65:15:20% 
split, stratifying both by outcome (ASD vs. non-ASD) and maternal identifier (maternal/parental 
features only appear within independent sets) (Figure 1C). This two-part stratification ensures 
equal representation of ASD and prevents data leakage of the same mother appearing in both data 
partitions. Any transformations applied to numeric variables were first performed on training data; 
the same parameters were then used to transform the validation and test data.  
 
Training individual models with balanced training data (downsampling the majority class to 1:1) 
would result in the loss of 469,051 of non-ASD cases, limiting the generalizability of our findings. 
We used large-scale ensemble of component models for our final model, where each model was 
trained with the same 7,624 of ASD cases and a different subset of non-ASD controls (sampled 
without replacement), ultimately leveraging all available data. The testing data was then evaluated 
on each model, and majority voting was used for final ASD prediction. This approach was applied 
to both the BEHRT and XGBoost model architectures. 
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2.5 Evalua.on Metrics  
 
We assessed prediction performance, for all models trained and evaluated, by measuring 
sensitivity (i.e., true positive rate or recall), specificity (i.e., true negative rate), and positive 
predictive value (PPV or precision) at different risk thresholds (Figure 2). As depicted in Figure 
1D, an error-minimized model could be leveraged in the future as a component of a population 
screening program. The model's overall ability to discriminate was determined using the area under 
the receiver operating characteristic curve (AUROC). Given the extreme class imbalance, we 
additionally report the F1 score (defined as the harmonic mean of PPV and sensitivity) and the 
area under the precision-recall curve (AUPRC). Finally, we reported the specificity and PPV value 
where the predicted probability cutoff yields a sensitivity of 50%. Cumulative gain curves were 
also created to express that our model can be used to identify an enriched pool of high-risk children. 

2.6 Algorithm Explainability 
 
To identify the most predictive features for ASD risk, we used game-theoretic SHapley Additive 
exPlanations (SHAP) analysis 34 to query the trained models and obtain an indication of how 
significant each factor is in determining the final ASD prediction 35. SHAP analysis generates 
many prediction experiments that vary ‘coalitions’ (or feature combinations) to compare the 
impact of variable inclusion/exclusion against the other features to quantitatively assess the 
average impact of a given feature on the overall model 34. 

3. Results 
 
The final study cohort included 703,894 mother-infant pairs, from deliveries between 2012 and 
2018, including 10,964 ASD cases (1.56%) (Figure 1A). We observed imbalance between 
outcome groups in several maternal and infant characteristics (Table 1). Compared to children 
without ASD, more children with ASD were male, were delivered by caesarean section, were 
admitted to the NICU, had a lower mean birth weight, and were younger gestational age at 
delivery. In addition, pre-existing diagnoses of maternal mental health disorders or diabetes were 
more prevalent in mothers to children with ASD, compared to those to children without ASD. 
Reported smoking during pregnancy was also more prevalent in mothers of children with ASD.  
 
Table 2 lists the results of the hyperparameter tuning experiments and final model performance. 
Resampling experiments revealed that the highest performance (using high sensitivity as the 
objective) was achieved from downsampled balanced ASD and non-ASD cases during training, 
motivating the development of a large-scale ensemble model. The final best-performing ensemble 
model achieved an AUROC of 69.6%, a sensitivity of 70.9%, a specificity of 56.9% and a positive 
predictive value of 2.4%. 
 
The receiver operator characteristic (ROC) curves for the voting and mean ensemble 
Transformer model for validation and test datasets are illustrated in Figure 3. Consistent 
performance curves across the validation and test datasets indicates our model did not overfit the 
training data and generalizes well to unseen data. From the cumulative gain plots in (Figure 4), 
we note that the top-5% of the model’s prediction contain approximately 15% of all true cases 
and the  top-10% of model predictions contain 25% of all true cases, suggesting that our model 
can be used to identify an enriched pool of high-risk cases. 
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An illustration of the top-ranking features identified via SHAP analysis across the three 
independent datasets is presented in Figure 5, where a positive SHAP value suggests that the factor 
increases the predicted probability of ASD while a negative value suggests that the feature 
decreases the predicted probability of ASD. Interestingly, a mixture of BORN-BIS, NSO, ICD-10, 
and DAD/NACRS features rank among the top-20 of each set with a general consistency.  

4. Discussion 
 
In this retrospective, population-based cohort study from Ontario, Canada, we designed and 
implemented ML models to predict ASD in our final study cohort of 703,894 mother-offspring 
pairs. The best-performing ensemble of Transformer models achieved an AUROC of 69.6% for 
predicting ASD diagnosis, a sensitivity of 70.9%, a specificity of 56.9%; results that are consistent 
with similar studies such as the work of Betts et al. 36. We applied ML best practices for training 
a predictor of ASD: comprehensive evaluation metrics, stratified train-test splits, and robust 
models that address class imbalance. We demonstrated model generalizability given that both 
Figure 3 and Figure 4 illustrate similar performance across validation and test datasets and Figure 
5 shows that the most impactful model features and ordering are also consistent across train, 
validation, and test datasets.  
 
The results of this work demonstrate feasibility and potential to identify young children with 
increased likelihood of developing ASD using a ML model applied to population-based and 
routinely collected data. The models presented within this work also have demonstrated face 
validity given that top-ranking predictive features (Figure 3) include known ASD risk factors (e.g., 
male sex, low birth weight). By incorporating large-scale and heterogenous datasets, these models 
and XAI features provide testable hypotheses for future work. Our models highlight a number of 
newborn screening factors that, following additional investigation, could be incorporated within 
an early life universal ASD screening program. 
 
To our knowledge, the only other studies to have used EMR ICD codes and a similar ML 
methodology were conducted by Betts et al. and Bishop-Fitzpatrick et al. 36,37. Our work reveals 
significant advances over these studies. The Betts et al. dataset ranged from 2003-2005 with 
approximately 260,000 offspring 37, whereas our work includes ~700,000 offspring and spans 
2012-2018. While earlier models utilized Logistic Regression and XGBoost models 37, we apply 
Transformer-based models that sequentially analyze mother-infant medical histories. Regarding 
performance, our work achieves a slightly lower AUROC score of 70% compared to the 73% 
reported by Betts et al. 37. The fact tha we demonstrate similar performance is significant given 
that these studies originate from completely different international settings. The complementary 
use of SHAP analysis as an XAI method within both studies offer promising insights into the 
candidate factors that may assist healthcare providers in understanding this complex 
neurodevelopmental condition. Finally, our use of a large-scale ensembling model architecture to 
address extreme class imbalance typical within healthcare dataset (as well as our approach to 
extensive hyperparameter tuning) are notable contributions that advance conventional applied 
healthcare ML methodologies. 
 
One of the limiting factors of all studies using medical claims for prediction of ASD, including 
ours, is the increased number of hospital/doctor’s visits that ASD patients have compared to 
normal cases. This may introduce bias into the data, where the ML model begins to make 
predictions based on the number of visits a child has, as opposed to true ASD risk factors. While 
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this is inherent in any medical claims data, our study mitigates this risk by combining offspring 
visits with maternal visits and padding/truncating all visits/codes to a length of 200. In addition, 
we choose to include the entire cohort of non-ASD controls, as opposed to selecting a subset for 
model training and evaluation. Although we have a similar number of total ASD cases to Chen et 
al 13., our model can better generalize to the entire population for screening ASD due to the 
inclusion of all possible population data. Other limitations include the lack of paternal information, 
imposing a bias and unequitable focus on maternal factors. Unfortunately, paternal medical data 
is not reliably collected and should be the subject of future research.  
 
Another important limiting factor of this work originates from the ICES ASD algorithm from 
which the ASD ground truth labels are acquired. The work of Brooks et al. assessed numerous 
algorithms for the identification of children with ASD in health administrative datasets resulting 
in the labels leveraged in this work 30. Their optimal algorithm achieved a sensitivity of 50.0% 
(95% CI 40.7–88.7%), specificity of 99.6% (99.4–99.7), PPV of 56.6% (46.8–66.3), and NPV 
99.4% (99.3–99.6) 30. Given the performance of this algorithm in establishing the ground truth for 
ASD in our own study, we cannot expect the models produced herein to exceed this level of 
performance. 
 
Bias must be considered before deploying any clinical decision-support tool that incorporates ML 
for early detection. Biases can originate in the data used, the algorithm, or a combination of both. 
For instance, in our study focusing on childhood ASD, the manifestation of the condition 
prevalence differs significantly between males and females (sex assignment at birth). This 
discrepancy leads to a lower rate of diagnosis and, consequently, a reduction in available treatment 
in female patients. If not fully considered and transparently understood, models like ours could 
unintentionally exacerbate this gender disparity. Our model may result in increased likelihood of 
misclassification among females, erroneously classifying females with ASD as controls in the 
sample data. Additionally, the skewed representation of male patients in the training data may 
unintentionally cause the algorithm to optimize for male-related indicators, thereby enhancing 
prediction accuracy for males while diminishing it for females. To prevent such discriminatory 
outcomes, it is imperative to thoroughly evaluate model performance across different patient 
subgroups and implement measures to mitigate these biases. 
 
Future work will seek to improve performance and identify new datasets for predicting ASD via 
our framework. Universal screens must limit the number of features considered by the model to 
those most reliable and impactful to consistently distinguishing ASD in young children. Thus 
future will work will also apply an ablation-like approach to ensure that we develop and implement 
a model for which the data is reliably collected, and the clinical relevance of the features are well-
understood. Ultimately, such an AI-based ASD screen will have the potential for deployment and 
use as a clinical decision support system, as depicted in Figure 1D. Additionally, the methodology 
and framework developed within this study could be applied to other complex neurodevelopmental 
conditions, towards a multi-condition screening framework. 

5. Conclusion 
 
This study demonstrates the feasibility of applying ML models to population-based and routinely 
collected health information to systematically identify young children who are likely to develop 
ASD. Evaluated on a fully independent dataset representative of a general population sample, our 
model’s reported sensitivity of 70.9%, specificity of 56.9%, and AUROC of 69.6% suggest that 
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our ensemble transformer model is a promising candidate for population-based ASD screening. 
Early identification through this method could facilitate comprehensive and timely assessment for 
ASD, ensuring prompt diagnosis and faster access to resources, support, or therapy. 
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Figures 
 

Figure 1. Training and prediction of autism spectrum disorder from mother-offspring health data. A, Cohort 
Accrual:  we specify the health data leveraged within our study and their inclusion/exclusion criteria. The maternal 
look-back window relative to the index is a maximum of 2 years and the offspring observation window is a minimum 
of 2 years and up to a maximum of 5 years. The outcome of interest is an ASD diagnosis between 18 and 64 months. 
B, Embedding & Architecture: the trained model requires converting real-world clinical data into an embedding – 
a transformation of categorical disease and intervention codes, timestamps, and related patient data into a lower-
dimensional real number continuous space. The transformer model then extracts relevant patterns from the disease 
history and leverages this latent space to generate ASD risk predictions. To make use of all available data, we trained 
62 individual component models and combined their predictions within a large-scale voting ensemble model that 
outputs a final high-confidence prediction. C, Learning: the general ML framework begins by portioning the mother 
& offspring medical histories into a training set, a validation set, and a test set. The data sources are numerous linked 
repositories aggregated by mother-offspring ID and preprocessed into both time-series and static one-hot encoded 
representations for subsequent machine learning algorithm development. The training and validation datasets are used 
to train the models and minimize the prediction error. D, Population-wide Prediction: we evaluate the final model’s 
prediction performance on the independently held-out test set to quantify its ability to generalize to unseen cases. This 
final model is used to discriminate between patients at higher and lower risk of developing ASD and this risk model 
can be leveraged as part of a population screening program.   
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Accuracy = 	
TP + TN

TP + TN + FP + FN 

Sensitivity = 	
TP

TP + FN 

Specificity =
TN

TN + FP 

PPV =
TP

TP + FP 

F1 =
2TP

2TP + FP + FN 

Figure 2. Performance metrics used for all models. TP: true positives (number of instances correctly predicted to 
be positive); TN; true negatives (number of instances correctly predicted to be negative), FP: false positives (number 
of instances incorrectly predicted to be positive); FN false negatives (number of instances incorrectly predicted to be 
negatives). 
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Figure 3. ROC curve summarizing performance of the final ensembled transformer model on the validation 
and test datasets. All n = 62 individual component model curves are plotted in light blue, overlaid but the voting 
(A,B) and mean (C, D) ROC curves summarizing the overall performance with respect to the validation (A, C) and 
test (B, D) datasets. 
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Figure 4. Ensemble transformer mean model cumulative gain curves.  
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Figure 5. Summary of the top-ranking risk factors determined using SHAP analysis across the three 
independent datasets. The right-most SHAP summary plot depicts the violin plot distribution for each factor. The 
possible feature values for each variable are tabulated in Supplementary Table S3; individual KDE plots comparing 
ASD and controls are illustrated in Supplementary Figure S2. 
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Tables 
 
Table 1. Complete Cohort Descrip4ve Sta4s4cs. 

  Non. Cases ASD. Cases SMD 
  (N=696,318) (N=12,182)   
Maternal Age at Delivery       
  Mean (SD) 30.7 (5.3) 30.9 (5.7) 0.033 
  Median (IQR) 31.0 (27.0, 34.0) 31.0 (27.0, 35.0) NA 
Pre-Pregnancy BMI       
  Mean (SD) 21.3 (11.5) 21.1 (12.5) 0.012 
  Median (IQR) 23.0 (19.5, 27.4) 23.1 (18.8, 28.2) N/A 
Pre-Pregnancy BMI Category       
  Underweight 29299 (4.2%) 591 (4.9%) 0.031 
  Normal 298843 (42.9%) 4543 (37.3%) 0.115 
  Overweight 140004 (20.1%) 2414 (19.8%) 0.0073 
  Class I Obesity 63975 (9.2%) 1265 (10.4%) 0.0403 
  Class II Obesity 28010 (4.0%) 589 (4.8%) 0.0395 
  Class III Obesity 20855 (3.0%) 463 (3.8%) 0.0445 
  Missing 115332 (16.6%) 2317 (19.0%) 0.0643 
Maternal Pre-Existing Health Condition (Any)       
  Yes 132274 (19.0%) 2757 (22.6%) 0.09 
  No 522610 (75.1%) 8653 (71.0%) 0.091 
  Missing 41434 (6.0%) 772 (6.3%) 0.016 
Maternal Diabetes Diagnosis       
  Yes 52330 (7.5%) 1328 (10.9%) 0.1173 
  No 637132 (91.5%) 10736 (88.1%) 0.1116 
  Missing 6856 (1.0%) 118 (1.0%) 0.0016 
Maternal Hypertension Diagnosis       
  Yes 37043 (5.3%) 909 (7.5%) 0.088 
  No 650566 (93.4%) 11083 (91.0%) 0.092 
  Missing 8709 (1.3%) 190 (1.6%) 0.026 
Maternal Pre-Existing Heart Disease       
  Yes 14918 (2.1%) 319 (2.6%) 0.031 
  No 639966 (91.9%) 11091 (91.0%) 0.031 
  Missing 41434 (6.0%) 772 (6.3%) 0.016 
Maternal Pre-Existing Asthma       
  Yes 26922 (3.9%) 602 (4.9%) 0.052 
  No 627962 (90.2%) 10808 (88.7%) 0.048 
  Missing 41434 (6.0%) 772 (6.3%) 0.016 
Maternal ASD Diagnosis       
  No 654884 (94.0%) 11410 (93.7%) 0.016 
  Missing 41434 (6.0%) 772 (6.3%) N/A 
Maternal Family History of ASD       
  Yes 85 (0.0%) 1-5  N/A 
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  No 3714 (0.5%) 95 (0.8%) 0.031 
  Missing 692519 (99.5%) 12082-12086 N/A 
Maternal Mental Health Disorder (Any)       
  Yes 108585 (15.6%) 2526 (20.7%) 0.134 
  No 546669 (78.5%) 8835 (72.5%) 0.139 
  Missing 41064 (5.9%) 821 (6.7%) 0.035 
Maternal Mood Disorder       
  Yes 56083 (8.1%) 1451 (11.9%) 0.129 
  No 599171 (86.0%) 9910 (81.3%) 0.127 
  Missing 41064 (5.9%) 821 (6.7%) 0.035 
Maternal Anxiety Disorder       
  Yes 61666 (8.9%) 1432 (11.8%) 0.095 
  No 593588 (85.2%) 9929 (81.5%) 0.101 
  Missing 41064 (5.9%) 821 (6.7%) 0.035 
Maternal Psychotic Disorder       
  Yes 487 (0.1%) 23 (0.2%) 0.033 
  No 654767 (94.0%) 11338 (93.1%) 0.039 
  Missing 41064 (5.9%) 821 (6.7%) 0.035 
Maternal Neurodevelopmental Disorder (Any)       
  Yes 163 (0.0%) 6 (0.0%) 0.014 
  No 654721 (94.0%) 11404 (93.6%) 0.017 
  Missing 41434 (6.0%) 772 (6.3%) 0.016 
Paternal ASD Diagnosis       
  Yes 1-5 0 (0%) N/A 
  No 3279 (0.5%) 81 (0.7%) 0.0258 
  Missing 693034-693038  12101 (99.3%) N/A 
Paternal Family History of ASD       
  Yes 74 (0.0%) 1-5 N/A 
  No 3107 (0.4%) 75 (0.6%) 0.0233 
  Missing 693137 (99.5%) 12102-12106  N/A 
Smoking During Pregnancy       
  Yes 71349 (10.2%) 1665 (13.7%) 0.106 
  No 598668 (86.0%) 9918 (81.4%) 0.124 
  Missing 26301 (3.8%) 599 (4.9%) 0.056 
Drug Use During Pregnancy (Any)        
  Yes 14893 (2.1%) 397 (3.3%) 0.069 
  No 641529 (92.1%) 10936 (89.8%) 0.082 
  Missing 39896 (5.7%) 849 (7.0%) 0.051 
Alcohol Use During Pregnancy       
  Yes 15155 (2.2%) 220 (1.8%) 0.027 
  No 639983 (91.9%) 11039 (90.6%) 0.046 
  Missing 41180 (5.9%) 923 (7.6%) 0.066 
Conception Type       
  Assisted 28069 (4.0%) 584 (4.8%) 0.037 
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  Spontaneous 633578 (91.0%) 10934 (89.8%) 0.042 
  Missing 34671 (5.0%) 664 (5.5%) 0.021 
Mode of Delivery       
  Cesarean Section 200921 (28.9%) 4227-4231  N/A 
  Vaginal 495300 (71.1%) 7950 (65.3%) 0.1263 
  Missing 97 (0.0%) 1-5  N/A 
Type of Labour       
  Induced 176918 (25.4%) 3340 (27.4%) 0.046 
  Spontaneous 412361 (59.2%) 6756 (55.5%) 0.076 
  No Labour 106673 (15.3%) 2074 (17.0%) 0.046 
  Missing 366 (0.1%) 12 (0.1%) 0.017 
Pain Management at Delivery       
  Neuraxial Anesthesia 402646 (57.8%) 7515 (61.7%) 0.079 
  Other 96331 (13.8%) 1356 (11.1%) 0.082 
  No 89099 (12.8%) 1218 (10.0%) 0.088 
  Missing 108242 (15.5%) 2093 (17.2%) 0.044 
Gestational Age at Delivery (weeks)       
  Mean (SD) 38.8 (2.1) 38.4 (2.5) 0.17 
  Median (IQR) 39.0 (38.0, 40.0) 39.0 (38.0, 40.0) N/A 
Birth Weight (grams)       
  Mean (SD) 3347.1 (568.4) 3265.7 (645.4) 0.13 

  Median (IQR) 
3370.0 (3030.0, 

3703.0) 
3310.0 (2935.0, 

3670.0) N/A 
Infant Sex       
  Male 354219 (50.9%) 9377 (77.0%) 0.56 
  Female 342099 (49.1%) 2805 (23.0%) N/A 
Birth Season       
  Spring 175795 (25.2%) 3069 (25.2%) 0.0012 
  Summer 189029 (27.1%) 3415 (28.0%) 0.0198 
  Fall 169304 (24.3%) 3090 (25.4%) 0.0243 
  Winter 162190 (23.3%) 2608 (21.4%) 0.0452 
Intention to Breastfeed       
  Yes 606131 (87.0%) 10173 (83.5%) 0.1 
  No 42692 (6.1%) 948 (7.8%) 0.065 
  Missing 47495 (6.8%) 1061 (8.7%) 0.071 
Apgar Score at 5 Minutes       
  Normal 686836 (98.6%) 11983 (98.4%) 0.022 
  Low 3230 (0.5%) 93 (0.8%) 0.038 
  Missing 6252 (0.9%) 106 (0.9%) 0.003 
NICU Admission       
  Yes 93715 (13.5%) 2485 (20.4%) 0.19 
  No 602603 (86.5%) 9697 (79.6%) N/A 
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Table 2. Hyperparameter tuning Transformer models on the valida4on dataset & evalua4ng generalizability on the test 
datasets. Final model selected by highest sensi2vity on the valida2on dataset (bold). * indicates the mean metric of the 
ensembled models rather than the vo(ng ensemble metric. 

Experiment Exp. Param. Sensitivity Specificity Accuracy AUROC PPV F1 
Score 

Ensembled Models 

Grouped Codes 60.10% 61.90% 61.90% 65.50%* 2.50% 4.70% 

All Codes 61.80% 60.80% 60.80% 66.10%* 2.50% 4.70% 

Pretrained 68.10% 61.40% 61.50% 70.90%* 2.70% 5.30% 
Pretrained w/ LR 

decay 72.00% 57.90% 58.10% 71.20%* 2.70% 5.10% 

Pretrained w/ LR 
decay, batch 

size=64 
72.30% 58.00% 58.20% 71.10%* 2.70% 5.20% 

Final Model; Test 
Dataset 

Pretrained w/ LR 
decay, batch size=64 70.90% 56.90% 57.10% 69.60%* 2.40% 4.70% 

Validation Dataset:   Pr@50Re: 3.2%; Sp@50Se: 76.2% 
Test Dataset:   Pr@50Re: 2.8%; Sp@50Se: 73.5% 
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Supplementary Methods 
 
1. Temporal Data Preprocessing 
 
The diagnostic and intervention code datasets (DAD, NACRS) were acquired from ICES as large 
data frames, with each row representing a single hospital/emergency visit. Each diagnosis and 
intervention code assigned to a patient during a specific visit was separated into an individual 
column. All infant visits (for ASD cases and non-cases) occurring after 5 years of age were 
censored, and for ASD cases, the visit with the initial ASD diagnosis was censored, in addition to 
all visits following the diagnosis date. Across all remaining visits, there were a total of 17,142 
unique diagnosis and intervention codes. In preparation for input to BEHRT, DAD and NACRS 
information for a single patient were concatenated to form a sequence of temporal medical visits. 
Following terminology defined in BEHRT (Figure 1D), each patient’s (i.e., mother or offspring) 
medical history can be defined as a series of visits, Vp = {vp1, vp2, vp3,… vpnp}, where each patient, 
p, has a total of np visits. Each individual visit, vpj, is defined by m number of diagnosis and/or 
intervention codes c assigned to each patient p for visit j, given by vpj = {cp1, cp2, cp3…cpmj}. For 
each patient, visits were temporally ordered and concatenated together, with ‘SEP’ added between 
visits to distinguish one from another. Further, we then concatenated mother visit Vmom sequences 
with their respective offspring visit sequences Voff to represent visits throughout the entire study 
timeline, beginning two years prior to birth and ending with the last infant hospital visit before 5 
years of age. Similar to BEHRT, we add ‘CLS’ at the beginning of the entire sequence. This 
resulted in a final sequence of Vpreg = {CLS, vmom1, SEP, …, vmomnmom, SEP, voff1, SEP, …, voff noff}. 
  
To consider temporal information and distinguish between mother and offspring codes, we 
developed two additional sequences which can be simultaneously input to BEHRT with the code 
sequence previously described. First, the timeframe between diagnosis and/or intervention codes 
and their proximity to the birthdate of the offspring may impact ASD diagnosis. Thus, the date of 
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each visit defined in Vpreg relative to the birth of the infant is used to create a sequence of dates, Dp 
= {dp1, dp2, dp3,… dpnp }, or Dpreg = {dmom1, dmom1, dmom1,…, dmomnmom, dmomnmom, doff1, doff1,…, doff noff} to 
match the Vpreg sequence defined above. To match the length of the visit sequence, the date is 
repeated for each code assigned during that visit, and all ‘SEP’ and ‘CLS’ values. Therefore, for a 
single visit, all dates will be identical. Next, while the date sequence implicitly defines if a code is 
assigned to the mother or offspring (all negative dates correspond to the mother, and all positive 
dates correspond to the child), we also explicitly assign each visit to a patient. The same diagnosis 
or intervention code may have higher significance for the mother or offspring, and as such, the 
patient should be explicitly defined within the input to BEHRT. This sequence consists of single 
integers to separate one patient from another. In our case, we assign 0 to all visits corresponding 
to the mother (up to the index date) and switches to 1 for infant visits. As with the date sequence, 
the values are repeated for all diagnosis and intervention codes, as well as ‘SEP’ and ‘CLS’ values. 
Therefore, Ppreg = {0, 0, 0, …, 0, 0, 1, 1, …, 1}.  
 
To compare our modified BEHRT time series-based model to the state-of-the-art XGBoost ML 
architecture, we transformed DAD and NACRS data into static data variables. Rather than one-
hot encoding 17,142 individual diagnosis and intervention codes, only a subset of codes were used 
to define specific health conditions. Specifically, we created variables to define the presence of: 
maternal diabetes, hypertension, heart disease, asthma, ASD, attention-deficit/hyperactivity 
disorder, mental health disorder, mood disorder, anxiety disorder, psychotic disorder, or 
neurodevelopmental disorder diagnosis; smoking, alcohol, or drug use during pregnancy; 
conception type, mode of delivery, labour type, intervention type during delivery; and/or NICU 
admission. These variables were also augmented with data from BORN for full completeness. 
ICD-10 diagnosis codes, CCI intervention codes, and BORN data used to define each variable can 
be found in Supplementary Data. In addition to these 19 created variables, we also grouped codes 
based on their first three characters, for a further 2,669 static DAD and NACRS variables. 
 
2. Sta6c Data Preprocessing 
 
Following the preprocessing of temporal data, we next transformed all static data variables from 
NSO, PSO, and overall cohort information included in this study. The following transformations 
were applied to the numeric variables. First, all values were log-transformed; values of zero and 
under were imputed with half of the lowest non-negative value in the dataset prior to 
transformation. Next, values were pareto standardized, using the square root of the standard 
deviation in the denominator. Winsorization was then applied to remove all outliers. Lastly, all 
missing values were imputed using predictive mean matching using the miceforest package in 
Python. 
 
Of the 142 available NSO variables, 49 were selected based on low missingness and possible 
relation to ASD based on clinical judgement, and numeric variables were transformed. We also 
selected five overall cohort variables: offspring birth season, gender, gestational age, birth weight, 
and maternal age.  
 
 
4. Sub-analyses 
 
For PSO, there are numerous different prenatal screening tests that can be administered, depending 
on multiple factors. For this reason, there is a large variation in the completeness of PSO variables 
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limiting the number of samples available to this analysis. To mitigate this, we originally omitted 
all PSO data from our experiments and instead performed a PSO sub-analysis once the final model 
was determined. The sub-analysis cohort was limited to the 301,829 pregnancies that received IPS 
PSO testing. Five numeric PSO variables were chosen and transformed as described above. In 
addition, four variables were one-hot encoded to define whether an offspring tested positive for 
trisomy-21, trisomy-18, open neural tube defect, or any rare disorder. The full list of static data 
variables included can be found in the accompanying DCP. The results of this PSO sub-analysis 
are available in Table S2where we note that the inclusion/exclusion of PSO variables does not 
greatly impact the model performance. 
 
5. Machine Learning Methods 
 
We examined two separate machine learning algorithms for the prediction of ASD: BEHRT, a 
transformer-based deep learning model 31 developed for analysis of Electronic Health Records 
(EHR), and Extreme Gradient Boosting (XGBoost) (27).  
 
5.a. BEHRT 

 
To consider temporal information in the prediction of ASD, we adapted BEHRT 31. BEHRT is a 
modification of BERT, a state-of-the-art transformer model designed for natural language 
processing tasks. Specifically, BERT analyzes sentences (part of larger documents) and learns 
relationships between words (and their positions in sentences) to understand the context of the 
sentences. BEHRT uses this same idea to understand relationships in EHR. Modelling codes as 
words, individual physician/hospital visits as sentences, and entire EHR histories as documents, 
BEHRT learns relationships between codes to identify how codes are related, understand the 
context of hospital visits, and predict future codes assigned to a patient. In addition, BEHRT also 
encodes the age of a patient at the time of an EHR visit to determine the effect of age on the 
relationships between codes and the prediction of future EHR visits. We modified BEHRT to 
encode time relative to offspring birth as opposed to age, and to analyze both mother and offspring 
diagnosis and intervention codes through our patient sequences Ppreg. 
 
Our modified BEHRT takes in five individual sequences to understand mom-offspring 
information: code, date, patient, positional, and segment sequences. As described previously, code 
sequences represent all diagnosis and intervention codes assigned to a patient during a specific 
medical visit. Both mother and infant codes were concatenated together. The date and patient 
sequences represent the date the codes were assigned, and the patient (i.e., mom vs offspring) they 
were assigned to. As described in BEHRT, positional sequences are used to identify the position 
of a visit in a patient’s entire medical history (e.g., first medical visit in study timeframe vs fifth 
medical visit). Positional sequences were encoded through a popular representation created by 
Vaswani et al. 38. Segment sequences explicitly separate one visit from another and alternate 
between 0 and 1. All date, patient, positional, and segment values are repeated for all codes 
assigned during a given visit, resulting in five separate, same-length sequences. 
 
The BEHRT architecture is designed as follows. Each individual sequence (e.g., code, date, etc.) 
is input to an embedding layer, which generates a unique latent representation of the information 
in the sequence. The embeddings are then added together to create a combined representation of 
the diagnosis/intervention code, the date it was assigned, who it was assigned to, its position within 
all visits throughout the study timeline, and which segment it belongs to. This combined 
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representation will be termed a ‘code representation’ for the remainder of this manuscript. The 
code representation is then used as input to the transformer attention layers. BEHRT uses self-
attention mechanisms to simultaneously update latent representations while determining 
importance of each code representation for the given task. Detailed information regarding attention 
mechanisms can be found in the original articles.  

 
5.b. XGBoost 

 
The concept of gradient boosting machines, initially proposed by Friedman 39,40 serves as the 
foundation for Extreme Gradient Boosting (XGBoost) models 32. Similar to Random Forest 
models, XGBoost models consist of an ensemble of classification and regression trees (CART). 
These models leverage systems optimization and fundamental machine learning principles; in 
essence, they maximize computational capabilities, allowing for scalability, portability, and 
notable accuracy. The fundamental concept behind boosting involves assigning equal initial 
weights to each sample and iteratively adjusting these weights 39. In each iteration, a training set 
is constructed based on the sample weights, where samples with higher weights have a greater 
likelihood of being included. Subsequently, a decision tree is constructed using this training set. 
Following each training iteration, samples that were misclassified during training receive increased 
weights. The models are then weighted based on the influence of the current model on decision-
making, as each model can only accurately learn a portion of the samples, rendering them "weak" 
models 39. Ultimately, the weighted combination of these weak models forms a robust model with 
enhanced predictive power. 
 
6. Architecture Design and Hyperparameter Tuning 
 
We pre-trained BEHRT with masked-language-modelling (MLM). MLM takes input sequences 
and masks a certain number of code representations within an entire patient’s medical history. The 
model is then trained to predict which codes are masked. By training the model to identify the 
missing codes based on other codes within a patient’s history, relationships between 
diagnosis/intervention codes are learned by the model. This provides the model with context for 
all possible codes across all patients, as opposed to inputting codes with no pre-training (which 
would effectively be meaningless to the model at the start of training). The learned context may 
improve performance of predicting ASD by allowing the model to better recognize related codes 
and how they may be associated with an ASD diagnosis. BEHRT is pre-trained with MLM for 30 
epochs with randomly initialized code, date, patient, positional, and sequence embedding weights. 
We applied the methods outlined in BEHRT 31, selecting 12% of codes to be masked, and 1.5% of 
codes to be randomly replaced with other codes. 
 
In this study, we used the same architecture determined to have best performance in the original 
BEHRT article 31. Specifically, we chose 6 hidden layers with a size of 288, 12 attention heads, an 
intermediate layer size of 512, a learning rate of 3e-5, and a dropout rate of 0.01. All sequences 
were truncated to a maximum of 200 codes per pregnancy. After pre-training with MLM, the final 
layer of the network used for MLM predictions was removed and replaced with a linear layer 
consisting of a single output to predict ASD vs. non-ASD. Prior to the final prediction layer, all 
static data variables (i.e., the 19 static DAD/NACRS variables, 49 NSO variables, and offspring 
birth weight, birth season, gestational age, sex, and maternal age) were concatenated with the 
output from the BEHRT attention layers. The network was then trained for an additional 10-25 
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epochs. For ASD prediction, a loss function of binary cross-entropy with logits loss function was 
used with a learning rate of 3e-5. 
 
We focused on hyperparameter tuning related to reducing class imbalance due to the low 
prevalence of ASD. Specifically, we varied the amount of upsampling of the minority class using 
PyTorch’s Weighted Random Sampler function. This function randomly samples the training data 
points with replacement; we set the number of overall samples to the original number of training 
samples, and used various weighting schemes with higher sampling of the minority class. The 
random sampling therefore simultaneously upsamples the minority class and downsamples the 
majority class. We also experimented with equal representation of ASD and non-ASD cases by 
downsampling non-ASD controls to a total of 7,624. 
 
Finally, for the comparative XGBoost model, following the work of Dick et al., we ran large-scale 
hyperparameter tuning experiments leveraging high-performance computing infrastructure 33. 
Given the large-scale dataset of complex heterogenous data available within this work, we 
considered a very large hyperparameter space varying the learning rate, maximum tree depth, and 
the number of estimators for a total of n=6,417 independently trained and evaluated models. To 
visualize and rank top-performing models, we represent model validation performance metrics as 
a comprehensive heatmap based on a specific metric of interest. Each of the nine subplots depicts 
the results keeping the learning rate fixed as we vary the maximum tree depth (x-axis) between 
[3,18] by increments of 1, the number of estimators (y-axis) between [50,600] by increments of 
25. Within each subplot, we highlight the maximum value with a black bounding box and the 
median value with a white bounding box. All results are normalized to the same colour range 
where lighter values represent better performing models. 
 
 
Supplementary Results 
 
Within this section, we present additional experimental results to complement the findings 
presented in the main text. Notably, the up-/downsampling experiments for individual 
Transformer models (non-ensemble) are summarized in Table S1. The high sensitivity value 
achieved from 1:1 downsampling inspired the n=62 component model ensemble transformer 
model presented in the main text. 
 
Table S1. Hyperparameter tuning Transformer models using up-/downsampling of classes on the valida4on dataset. 
Experiments indicate that training upon a balanced dataset through downsampling the majority class leads to the highest model 
sensi2vity. 

Experiment Exp. Param. Sensitivity Specificity Accuracy AUROC PPV F1 
Score 

Upsampling Minority 
Class 

None 0.00% 100.00% 98.40% 66.90% 0.00% 0.00% 

1:2 0.20% 100.00% 98.40% 65.40% 10.00% 0.40% 

1:5 4.90% 98.60% 97.10% 65.60% 5.20% 5.00% 

1:50 9.80% 94.40% 93.00% 62.80% 2.70% 4.20% 

1:63 (balanced) 8.00% 95.90% 94.50% 63.30% 3.00% 4.30% 

1:120 13.40% 88.70% 87.50% 63.10% 1.90% 3.30% 

Downsampling Majority 
Class 1:1 86.90% 30.40% 31.20% 64.90% 2.00% 3.80% 
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Furthermore, Table S2 summarises the sub-analysis results when including/exclusing the PSO 
variables. Given that this sub-analysis was only applied to a limited dataset (only a small fraction 
of cases undergo PSO screening), the performance values can only be compared to each other 
and cannot be compared to other tabulated metrics. We determine that the inclusion of PSO 
variables does not lead to an increase in a meaningful increase in performance metrics. 
 
 
Table S2. Limited dataset sub-analysis of component performance with and without PSO data. 

Experiment Exp. Param. Sensitivity Specificity Accuracy AUROC PPV F1 
Score 

PSO Variable Subanalysis  
With PSO 74.40% 52.70% 53.00% 69.80% 2.70% 5.10% 

Without PSO 73.20% 54.70% 55.00% 70.50% 2.70% 5.30% 

 
 
Hyperparameter Tuning of the XGBoost Model(s) 
 
Following from the work of Dick et al 33, we performed large-scale hyperparameter tuning 
experiments to train thousands of XGBoost models. Three hyperparameters defining the size and 
complexity of the XGBoost model were selected and visually summarises by validation dataset 
recall in Figure S1: the learning rate (LR; individual panels), the number of estimators (y-axis) 
and the maximum tree depth (x-axis). We note that the highest achievable recall 75.5% is 
achieved with the smallest value LR=0.001, a maximum tree depth=4 and with n=100 individual 
estimators. Conceptually, this represents a comparatively small forest of comparatively shallow 
trees. Conveniently, such a model is also among the fastest for inference time given the relatively 
low complexity of the overall model.  
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Figure S1. Large-scale hyperparameter tuning experiments of XGBoost models to determine op4mal component model 
configura4on. The individual heatmaps each represent one of nine learning rate values, and each varies the maximum tree (x-
axis) and the number of component trees (y-axis) of each model. Top-performing models by Recall are iden2fied within each 
learning rate (LR) panel for inter-panel comparison. 
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Figure S2.  Kernel Density Es4ma4on Plots for the Top-20 Features from top-ranking XGBoost model SHAP Analysis. 

 
 
Table S3. Tabula4on of the top-20 features. 

Rank Variable Id Variable Name Dataset Numeric 
Values Category 

1 sex Offspring Sex at Birth BORN-BIS 0,1 Male, Female 

2 feedtype_category Feedtype Category BORN-BIS 1,2,3,4 
Breast, Formula, Breast 

and Formula, Other 
(NPO, TPN) 

3 b_weight Offspring Weight at Birth BORN-BIS Continuous N/A 
4 maternal_mental Maternal Mental Disorder BORN-BIS 0,1 False, True 
5 S01 Open Wound of the Head ICD10 0,1 False, True 
6 met Methionine Screen NSO Continuous N/A 
7 c2 C2 Screen NSO Continuous N/A 
8 c18_2 C18_2 Screen NSO Continuous N/A 
9 tyr Tyrosine Screen NSO Continuous N/A 
10 cit Citruline Screen NSO Continuous N/A 
11 orn Ornithine Screen NSO Continuous N/A 
12 c4dc C4DC Screen NSO Continuous N/A 
13 c5dc C5DC Screen NSO Continuous N/A 

14 Q25 Congenital Malformation of 
Great Arteries ICD10 0,1 False, True 

15 galt GALT Screen NSO Continuous N/A 
16 c16 C16 Screen NSO Continuous N/A 
17 1NK Intervention Small Intestines DAD/NACRS 0,1 False, True 

18 lab_type Labour Type NSO 1,2,3,-1 Induced, Spontaneous, 
No Labour, Missing 

19 m_gestwks_del Gestation Age at Delivery BORN-BIS Continuous N/A 
20 G41 Status Epilepticus ICD10 0,1 False, True 
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Figure S3.  Top-K Precision by Rank Order of Mean Model Predic4on score. 

A B
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