Abstract
As ChatGPT emerges as a potential ally in healthcare decision-making, it is imperative to investigate how users leverage and perceive it. The repurposing of technology is innovative but brings risks, especially since AI’s effectiveness depends on the data it’s fed. In healthcare, where accuracy is critical, ChatGPT might provide sound advice based on current medical knowledge, which could turn into misinformation if its data sources later include erroneous information. Our study assesses user perceptions of ChatGPT, particularly of those who used ChatGPT for healthcare-related queries. By examining factors such as competence, reliability, transparency, trustworthiness, security, and persuasiveness of ChatGPT, the research aimed to understand how users rely on ChatGPT for health-related decision-making. A web-based survey was distributed to U.S. adults using ChatGPT at least once a month. Data was collected from February to March 2023. Bayesian Linear Regression was used to understand how much ChatGPT aids in informed decision-making. This analysis was conducted on subsets of respondents, both those who used ChatGPT for healthcare decisions and those who did not. Qualitative data from open-ended questions were analyzed using content analysis, with thematic coding to extract public opinions on urban environmental policies. The coding process was validated through inter-coder reliability assessments, achieving a Cohen’s Kappa coefficient of 0.75. Six hundred and seven individuals responded to the survey. Respondents were distributed across 306 US cities of which 20 participants were from rural cities. Of all the respondents, 44 used ChatGPT for health-related queries and decision-making. While all users valued the content quality, privacy, and trustworthiness of ChatGPT across different contexts, those using it for healthcare information place a greater emphasis on safety, trust, and the depth of information. Conversely, users engaging with ChatGPT for non-healthcare purposes prioritize usability, human-like interaction, and unbiased content. In conclusion our study findings suggest a clear demarcation in user expectations and requirements from AI systems based on the context of their use.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The author(s) received no specific funding for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study, bearing the Institutional Review Board (IRB) protocol number 2302725983 and classified as a flex protocol type, received approval from West Virginia University. No identifiers were collected during the study. In compliance with ethical research practices, informed consent was obtained from all participants before initiating the survey. Attached to the survey was a comprehensive cover letter outlining the purpose of the study, the procedure involved, the approximate time to complete the survey, and assurances of anonymity and confidentiality. It also emphasized that participation was completely voluntary, and participants could withdraw at any time without any consequences. The cover letter also included contact information of the researchers for any questions or concerns the participants might have regarding the study. Participants were asked to read through this information carefully and were instructed to proceed with the survey only if they understood and agreed to the terms described, effectively providing their consent to participate in the study.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Anonymized data are available on personal contact with the corresponding author. Due to privacy concerns the raw data not available on any public repository.